Randomness and Fuzziness in Bayes Multistage Classifier | SpringerLink
Skip to main content

Randomness and Fuzziness in Bayes Multistage Classifier

  • Conference paper
Hybrid Artificial Intelligence Systems (HAIS 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6076))

Included in the following conference series:

Abstract

The paper considers the mixture of randomness and fuzziness in Bayes multistage classifier. Assuming that both the tree structure and the feature used at each non-terminal node have been specified, we present the probability of error. This model of classification is based on the fuzzy observations, the randomness of classes and the Bayes rule. The obtained error for fuzzy observations is compared with the case when observation are not fuzzy as a difference of errors. Additionally, the obtained results are compared with the bound on the probability of error based on information energy of fuzzy events.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Antos, A., Devroye, L., Gyorfi, L.: Lower bounds for Bayes error estimation. IEEE Trans. Pattern Analysis and Machine Intelligence 21, 643–645 (1999)

    Article  Google Scholar 

  2. Avi-Itzhak, H., Diep, T.: Arbitrarily tight upper and lower bounds on the bayesian probability of error. IEEE Trans. Pattern Analysis and Machine Intelligence 18, 89–91 (1996)

    Article  Google Scholar 

  3. Burduk, R., Kurzyński, M.: Two-stage binary classifier with fuzzy-valued loss function. Pattern Analysis and Applications 9(4), 353–358 (2006)

    Article  MathSciNet  Google Scholar 

  4. Burduk, R.: Classification error in Bayes multistage recognition task with fuzzy observations. Pattern Analysis and Applications 13(1), 85–91 (2010)

    Article  MathSciNet  Google Scholar 

  5. Kulkarni, A.: On the mean accuracy of hierarchical classifiers. IEEE Transactions on Computers 27, 771–776 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  6. Kuncheva, L.I.: Combining pattern classifier: Methods and Algorithms. John Wiley, New York (2004)

    Book  MATH  Google Scholar 

  7. Kurzyński, M.: On the multistage Bayes classifier. Pattern Recognition 21, 355–365 (1988)

    Article  MATH  Google Scholar 

  8. Okuda, T., Tanaka, H., Asai, K.: A formulation of fuzzy decision problems with fuzzy information using probability measures of fuzzy events. Information and Control 38, 135–147 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  9. Pardo, J.A., Taneja, I.J.: On the Probability of Error in Fuzzy discrimination Problems. Kybernetes 21(6), 43–52 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  10. Pardo, L., Menendez, M.L.: Some Bounds on Probability of Error in Fuzzy Discrimination Problems. European Journal of Operational Research 53, 362–370 (1991)

    Article  MATH  Google Scholar 

  11. Pedrycz, W.: Fuzzy Sets in Pattern Recognition: Methodology and Methods. Pattern Recognition 23, 121–146 (1990)

    Article  Google Scholar 

  12. Stańczyk, U.: Dominance-Based Rough Set Approach Employed in Search of Authorial Invariants. In: Advances in Intelligent and Soft Computing, vol. 57, pp. 293–301. Springer, Heidelberg (2009)

    Google Scholar 

  13. Supriya, K.D., Ranjit, B., Akhil, R.R.: An application of intuitionistic fuzzy sets in medical diagnosis. Fuzzy Sets and Systems 117(2), 209–213 (2001)

    Article  MATH  Google Scholar 

  14. Woźniak, M.: Experiments on linear combiners. Advances in Soft Computing, vol. 47, pp. 445–452. Springer, Heidelberg (2008)

    Google Scholar 

  15. Zadeh, L.A.: Probability measures of fuzzy events. Journal of Mathematical Analysis and Applications 23, 421–427 (1968)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Burduk, R. (2010). Randomness and Fuzziness in Bayes Multistage Classifier. In: Graña Romay, M., Corchado, E., Garcia Sebastian, M.T. (eds) Hybrid Artificial Intelligence Systems. HAIS 2010. Lecture Notes in Computer Science(), vol 6076. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13769-3_65

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13769-3_65

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13768-6

  • Online ISBN: 978-3-642-13769-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics