Abstract
While a boolean notion of correctness is given by a preorder on systems and properties, a quantitative notion of correctness is defined by a distance function on systems and properties, where the distance between a system and a property provides a measure of “fit” or “desirability.” In this article, we explore several ways how the simulation preorder can be generalized to a distance function. This is done by equipping the classical simulation game between a system and a property with quantitative objectives. In particular, for systems that satisfy a property, a quantitative simulation game can measure the “robustness” of the satisfaction, that is, how much the system can deviate from its nominal behavior while still satisfying the property. For systems that violate a property, a quantitative simulation game can measure the “seriousness” of the violation, that is, how much the property has to be modified so that it is satisfied by the system. These distances can be computed in polynomial time, since the computation reduces to the value problem in limit average games with constant weights. Finally, we demonstrate how the robustness distance can be used to measure how many transmission errors are tolerated by error correcting codes.
This work was partially supported by the European Union project COMBEST and the European Network of Excellence ArtistDesign.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alur, R., Henzinger, T., Kupferman, O., Vardi, M.: Alternating refinement relations. In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 163–178. Springer, Heidelberg (1998)
Bloem, R., Chatterjee, K., Henzinger, T., Jobstmann, B.: Better quality in synthesis through quantitative objectives. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 140–156. Springer, Heidelberg (2009)
Bloom, B.: Ready simulation, bisimulation, and the semantics of CCS-like languages. PhD thesis, MIT (1989)
Caspi, P., Benveniste, A.: Toward an approximation theory for computerised control. In: Sangiovanni-Vincentelli, A.L., Sifakis, J. (eds.) EMSOFT 2002. LNCS, vol. 2491, pp. 294–304. Springer, Heidelberg (2002)
Chatterjee, K., Doyen, L., Henzinger, T.: Quantitative languages. In: Kaminski, M., Martini, S. (eds.) CSL 2008. LNCS, vol. 5213, pp. 385–400. Springer, Heidelberg (2008)
Chatterjee, K., Doyen, L., Henzinger, T.: Expressiveness and closure properties for quantitative languages. In: LICS, pp. 199–208 (2009)
Chidamber, S., Kemerer, C.: A metrics suite for object oriented design. IEEE Trans. Software Eng. 20(6), 476–493 (1994)
de Alfaro, L., Faella, M., Stoelinga, M.: Linear and branching system metrics. IEEE Trans. Software Eng. 35(2), 258–273 (2009)
de Alfaro, L., Henzinger, T., Majumdar, R.: Discounting the future in systems theory. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 1022–1037. Springer, Heidelberg (2003)
Desharnais, J., Gupta, V., Jagadeesan, R., Panangaden, P.: Metrics for labelled markov processes. Theor. Comput. Sci. 318(3), 323–354 (2004)
Droste, M., Gastin, P.: Weighted automata and weighted logics. Theor. Comput. Sci. 380(1-2), 69–86 (2007)
Ehrenfeucht, A., Mycielski, J.: Positional strategies for mean payoff games. International Journal of Game Theory, 163–178 (1979)
Fenton, N.: Software Metrics: A Rigorous and Practical Approach, Revised (Paperback). Course Technology (1998)
Hamming, R.W.: Error detecting and error correcting codes. Bell System Tech. J. 29, 147–160 (1950)
Lincke, R., Lundberg, J., Löwe, W.: Comparing software metrics tools. In: ISSTA, pp. 131–142 (2008)
Lyons, R.E., Vanderkulk, W.: The use of triple-modular redundancy to improve computer reliability. IBM J. Res. Dev. 6(2), 200–209 (1962)
Milner, R.: An algebraic definition of simulation between programs. In: IJCAI, pp. 481–489 (1971)
Shannon, C.E.: A Mathematical Theory of Communication. Bell System Technical Journal 27 (1948)
van Breugel, F.: An introduction to metric semantics: operational and denotational models for programming and specification languages. Theor. Comput. Sci. 258(1-2), 1–98 (2001)
van Breugel, F., Worrell, J.: Approximating and computing behavioural distances in probabilistic transition systems. Theor. Comput. Sci. 360(1-3), 373–385 (2006)
Zwick, U., Paterson, M.: The complexity of mean payoff games on graphs. Theor. Comput. Sci. 158(1&2), 343–359 (1996)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Černý, P., Henzinger, T.A., Radhakrishna, A. (2010). Quantitative Simulation Games . In: Manna, Z., Peled, D.A. (eds) Time for Verification. Lecture Notes in Computer Science, vol 6200. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13754-9_3
Download citation
DOI: https://doi.org/10.1007/978-3-642-13754-9_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-13753-2
Online ISBN: 978-3-642-13754-9
eBook Packages: Computer ScienceComputer Science (R0)