Quantitative Simulation Games | SpringerLink
Skip to main content

Quantitative Simulation Games

  • Chapter
Time for Verification

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6200))

  • 727 Accesses

Abstract

While a boolean notion of correctness is given by a preorder on systems and properties, a quantitative notion of correctness is defined by a distance function on systems and properties, where the distance between a system and a property provides a measure of “fit” or “desirability.” In this article, we explore several ways how the simulation preorder can be generalized to a distance function. This is done by equipping the classical simulation game between a system and a property with quantitative objectives. In particular, for systems that satisfy a property, a quantitative simulation game can measure the “robustness” of the satisfaction, that is, how much the system can deviate from its nominal behavior while still satisfying the property. For systems that violate a property, a quantitative simulation game can measure the “seriousness” of the violation, that is, how much the property has to be modified so that it is satisfied by the system. These distances can be computed in polynomial time, since the computation reduces to the value problem in limit average games with constant weights. Finally, we demonstrate how the robustness distance can be used to measure how many transmission errors are tolerated by error correcting codes.

This work was partially supported by the European Union project COMBEST and the European Network of Excellence ArtistDesign.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 10295
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alur, R., Henzinger, T., Kupferman, O., Vardi, M.: Alternating refinement relations. In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 163–178. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  2. Bloem, R., Chatterjee, K., Henzinger, T., Jobstmann, B.: Better quality in synthesis through quantitative objectives. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 140–156. Springer, Heidelberg (2009)

    Google Scholar 

  3. Bloom, B.: Ready simulation, bisimulation, and the semantics of CCS-like languages. PhD thesis, MIT (1989)

    Google Scholar 

  4. Caspi, P., Benveniste, A.: Toward an approximation theory for computerised control. In: Sangiovanni-Vincentelli, A.L., Sifakis, J. (eds.) EMSOFT 2002. LNCS, vol. 2491, pp. 294–304. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  5. Chatterjee, K., Doyen, L., Henzinger, T.: Quantitative languages. In: Kaminski, M., Martini, S. (eds.) CSL 2008. LNCS, vol. 5213, pp. 385–400. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  6. Chatterjee, K., Doyen, L., Henzinger, T.: Expressiveness and closure properties for quantitative languages. In: LICS, pp. 199–208 (2009)

    Google Scholar 

  7. Chidamber, S., Kemerer, C.: A metrics suite for object oriented design. IEEE Trans. Software Eng. 20(6), 476–493 (1994)

    Article  Google Scholar 

  8. de Alfaro, L., Faella, M., Stoelinga, M.: Linear and branching system metrics. IEEE Trans. Software Eng. 35(2), 258–273 (2009)

    Article  MATH  Google Scholar 

  9. de Alfaro, L., Henzinger, T., Majumdar, R.: Discounting the future in systems theory. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 1022–1037. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  10. Desharnais, J., Gupta, V., Jagadeesan, R., Panangaden, P.: Metrics for labelled markov processes. Theor. Comput. Sci. 318(3), 323–354 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Droste, M., Gastin, P.: Weighted automata and weighted logics. Theor. Comput. Sci. 380(1-2), 69–86 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ehrenfeucht, A., Mycielski, J.: Positional strategies for mean payoff games. International Journal of Game Theory, 163–178 (1979)

    Google Scholar 

  13. Fenton, N.: Software Metrics: A Rigorous and Practical Approach, Revised (Paperback). Course Technology (1998)

    Google Scholar 

  14. Hamming, R.W.: Error detecting and error correcting codes. Bell System Tech. J. 29, 147–160 (1950)

    Article  MathSciNet  Google Scholar 

  15. Lincke, R., Lundberg, J., Löwe, W.: Comparing software metrics tools. In: ISSTA, pp. 131–142 (2008)

    Google Scholar 

  16. Lyons, R.E., Vanderkulk, W.: The use of triple-modular redundancy to improve computer reliability. IBM J. Res. Dev. 6(2), 200–209 (1962)

    Article  MATH  Google Scholar 

  17. Milner, R.: An algebraic definition of simulation between programs. In: IJCAI, pp. 481–489 (1971)

    Google Scholar 

  18. Shannon, C.E.: A Mathematical Theory of Communication. Bell System Technical Journal 27 (1948)

    Google Scholar 

  19. van Breugel, F.: An introduction to metric semantics: operational and denotational models for programming and specification languages. Theor. Comput. Sci. 258(1-2), 1–98 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. van Breugel, F., Worrell, J.: Approximating and computing behavioural distances in probabilistic transition systems. Theor. Comput. Sci. 360(1-3), 373–385 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Zwick, U., Paterson, M.: The complexity of mean payoff games on graphs. Theor. Comput. Sci. 158(1&2), 343–359 (1996)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Černý, P., Henzinger, T.A., Radhakrishna, A. (2010). Quantitative Simulation Games . In: Manna, Z., Peled, D.A. (eds) Time for Verification. Lecture Notes in Computer Science, vol 6200. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13754-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13754-9_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13753-2

  • Online ISBN: 978-3-642-13754-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics