Prediction Model Selection and Spare Parts Ordering Policy for Efficient Support of Maintenance and Repair of Equipment | SpringerLink
Skip to main content

Prediction Model Selection and Spare Parts Ordering Policy for Efficient Support of Maintenance and Repair of Equipment

  • Conference paper
Analytical and Stochastic Modeling Techniques and Applications (ASMTA 2010)

Abstract

The prediction model selection problem via variable subset selection is one of the most pervasive model selection problems in statistical applications. Often referred to as the problem of subset selection, it arises when one wants to model the relationship between a variable of interest and a subset of potential explanatory variables or predictors, but there is uncertainty about which subset to use. Several papers have dealt with various aspects of the problem but it appears that the typical regression user has not benefited appreciably. One reason for the lack of resolution of the problem is the fact that it has not been well defined. Indeed, it is apparent that there is not a single problem, but rather several problems for which different answers might be appropriate. The intent of this paper is not to give specific answers but merely to present a new simple multiplicative variable selection criterion based on the parametrically penalized residual sum of squares, which performs consistently well across a wide variety of variable selection problems. This criterion allows one to select a subset model for prediction of a demand for spare parts, in support of maintenance and repair of equipment. The past data of prediction errors are used at each stage to determine an adaptive spare parts ordering policy for a providing an adequate yet efficient supply of spare parts. In order to optimize the adaptive spare parts ordering policy at each stage under parametric uncertainty, the invariant embedding technique is used. Practical utility of the proposed approach is demonstrated by examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Draper, N.R., Smith, H.: Applied Regression Analysis, 2nd edn. Wiley, New York (1981)

    MATH  Google Scholar 

  2. Montgomery, D.C., Peck, E.A.: Introduction to Linear Regression Analysis, 2nd edn. Wiley, New York (1992)

    MATH  Google Scholar 

  3. Miller, A.J.: Subset Selection in Regression, 2nd edn. Chapman & Hall/CRC, New York (2002)

    MATH  Google Scholar 

  4. Manzini, R., Regattieri, A., Pham, H., Ferrari, E.: Maintenance Information System and Failure Rate Prediction. In: Maintenance for Industrial Systems. Springer Series in Reliability Engineering, pp. 189–217. Springer, London (2009)

    Google Scholar 

  5. Furnival, G.M., Wilson, R.W.: Regression by Leaps and Bounds. Technometrics 16, 499–511 (1974)

    Article  MATH  Google Scholar 

  6. Efroymson, M.A.: Multiple Regression Analysis. In: Ralston, A., Wilf, H.S. (eds.) Mathematical Methods for Digital Computers, pp. 191–203. Wiley, New York (1960)

    Google Scholar 

  7. Hocking, R.R.: The Analysis and Selection of Variables in Linear Regression. Biometrics 32, 1–49 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  8. Thompson, M.L.: Selection of Variables in Multiple Regression: Part I. A Review and Evaluation. International Statistical Review 46, 1–19 (1978)

    MATH  Google Scholar 

  9. Myers, R.L.: Classical and Modern Regression Analysis, 2nd edn. Wiley, New York (1992)

    Google Scholar 

  10. Akaike, H.: Information Theory and an Extension of the Maximum Likelihood Principle. In: Petrov, B.N., Csaki, F. (eds.) Proc. of the 2nd International Symposium on Information Theory, pp. 267–281. Akademia Kiado, Budapest (1973)

    Google Scholar 

  11. Stone, M.: An Asymptotic Equivalence of Choice of Model by Cross-Validation and Akaike’s Criterion. Journal of the Royal Statistical Society B 39, 44–47 (1977)

    MATH  Google Scholar 

  12. Schwarz, G.: Estimating the Dimension of a Model. The Annals of Statistics 6, 461–464 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  13. Rissanen, J.: Modeling by Shortest Data Description. Automatica 14, 465–471 (1978)

    Article  MATH  Google Scholar 

  14. Haughton, D.: On the Choice of a Model to Fit Data from an Exponential Family. The Annals of Statistics 16, 342–355 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  15. Shibata, R.: An Optimal Selection of Regression Variables. Biometrika 68, 45–54 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  16. Stone, M.: Comments on Model Selection Criteria of Akaike and Schwarz. Journal of the Royal Statistical Society B 41, 276–278 (1979)

    Google Scholar 

  17. Foster, D.P., George, E.I.: The Risk Inflation Criterion for Multiple Regression. The Annals of Statistics 22, 1947–1975 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  18. Donoho, D.L., Johnstone, I.M.: Ideal Spatial Adaptation by Wavelet Shrinkage. Biometrika 81, 425–456 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  19. Tibshirani, R., Knight, K.: The Covariance Inflation Criterion for Model Selection. Journal of the Royal Statistical Society B 61, 529–546 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  20. Ye, J.: On Measuring and Correcting the Effects of Data Mining and Model Selection. Journal of the American Statistical Association 93, 120–131 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  21. Hurvich, C.M., Tsai, C.L.: Regression and Time Series Model Selection in Small Samples. Biometrika 76, 297–307 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  22. Hurvich, C.M., Tsai, C.L.: A Cross-Validatory AIC for Hard Wavelet Thresholding in Spatially Adaptive Function Estimation. Biometrika 85, 701–710 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  23. Rao, C.R., Wu, Y.: A Strongly Consistent Procedure for Model Selection in a Regression Problem. Biometrika 76, 369–374 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  24. Shao, J.: Linear Model Selection by Cross-Validation. Journal of the American Statistical Association 88, 486–494 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  25. Wei, C.Z.: On Predictive Least Squares Principles. The Annals of Statistics 29, 1–42 (1992)

    Article  Google Scholar 

  26. Zheng, X., Loh, W.Y.: A Consistent Variable Selection Criterion for Linear Models with High-Dimensional Covariates. Statistica Sinica 7, 311–325 (1997)

    MATH  MathSciNet  Google Scholar 

  27. Benjamini, Y., Hochberg, Y.: Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society B 57, 289–300 (1995)

    MATH  MathSciNet  Google Scholar 

  28. Clyde, M., George, E.I.: Empirical Bayes Estimation in Wavelet Nonparametric Regression. In: Muller, P., Vidakovic, B. (eds.) Bayesian Inference in Wavelet-Based Models, pp. 309–322. Springer, New York (1999)

    Google Scholar 

  29. Clyde, M., George, E.I.: Flexible Empirical Bayes Estimation for Wavelets. Journal of the Royal Statistical Society B 62, 681–689 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  30. Johnstone, I.M., Silverman, B.W.: Empirical Bayes Approaches to Mixture Problems and Wavelet Regression. Technical Report, University of Bristol (1998)

    Google Scholar 

  31. Efron, B.: Estimating the Error Rate of a Predictive Rule: Improvement over Cross-Validation. Journal of the American Statistical Association 78, 316–331 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  32. Gong, G.: Cross-Validation, the Jackknife, and the Bootstrap: Excess Error Estimation in Forward Logistic Regression. Journal of the American Statistical Association 393, 108–113 (1986)

    Article  Google Scholar 

  33. Shao, J.: An Asymptotic Theory for Linear Model Selection. Statistica Sinica 7, 229–264 (1997)

    Google Scholar 

  34. Zhang, P.: Inference after Variable Selection in Linear Regression Models. Biometrika 79, 741–746 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  35. Breiman, L.: The Little Bootstrap and Other Methods for Dimensionality Selection in Regression: X-Fixed Prediction Error. Journal of the American Statistical Association 87, 738–754 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  36. Breiman, L.: Better Subset Selection Using the Nonnegative Garrote. Technometrics 37, 373–384 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  37. Tibshirani, R.: Regression Shrinkage and Selection via the Lasso. Journal of the Royal Statistical Society B 58, 267–288 (1996)

    MATH  MathSciNet  Google Scholar 

  38. Nechval, K.N., Berzins, G., Nechval, N.A., Purgailis, M., Zolova, N.: Information Criterion for Variable Selection in Econometric Models and its Applications. In: Kopytov, E., Pranevicius, H., Zavadskas, E., Yatskiv, I. (eds.) Proceedings of the International Conference on Modelling of Business, Industrial and Transport Systems, pp. 24–32, Transport and Telecommunication Institute, Riga, Latvia (2008)

    Google Scholar 

  39. Nechval, N.A., Berzins, G., Purgailis, M., Nechval, K.N.: New Variable Selection Criterion for Econometric Models. In: Trappl, R. (ed.) Cybernetics and Systems 2008, vol. I, pp. 64–69, Austrian Society for Cybernetic Studies, Vienna, Austria (2008)

    Google Scholar 

  40. Nechval, N.A., Purgailis, M.: New Variable Selection Criteria for Econometric Models and their Applications. Humanities and Social Sciences: Latvia 57, 6–26 (2008)

    Google Scholar 

  41. Nechval, N.A., Nechval, K.N., Purgailis, M., Rozevskis, U., Strelchonok, V.F., Moldovan, M., Bausova, I., Skiltere, D.: Recognition of Subsets of Informative Variables in Regression. In: Krasnoproshin, V., Ablameyko, S., Sadykhov, R. (eds.) Proceedings of the International Conference on Pattern Recognition and Information Processing, pp. 371–376. University of Belarus, Minsk (2009)

    Google Scholar 

  42. George, E.I.: Bayesian Model Selection. In: Kotz, S., Read, C., Banks, D. (eds.) Encyclopedia of Statistical Sciences, vol. 3, pp. 39–46. Wiley, New York (1999)

    Google Scholar 

  43. Garthwaite, P.H., Dickey, J.M.: Quantifying and Using Expert Opinion for Variable-Selection Problems in Regression (with discussion). Chemometrics and Intelligent Laboratory Systems 35, 1–34 (1996)

    Article  Google Scholar 

  44. McClave, J.T., Benson, P.G., Sincich, T.: Statistics for Business and Economics, 7th edn. Prentice Hall, New Jersey (1998)

    Google Scholar 

  45. Newbold, P.: Statistics for Business & Economics, 4th edn. Prentice-Hall, Inc., New Jersey (1995)

    Google Scholar 

  46. Nechval, N.A., Nechval, K.N., Vasermanis, E.K.: Effective State Estimation of Stochastic Systems. Kybernetes 32, 666–678 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  47. Nechval, N.A., Berzins, G., Purgailis, M., Nechval, K.N.: Improved Estimation of State of Stochastic Systems via Invariant Embedding Technique. WSEAS Transactions on Mathematics 7, 141–159 (2008)

    MathSciNet  Google Scholar 

  48. Narula, S.C., Wellington, J.F.: Prediction, Linear Regression and Minimum Sum of Relative Errors. Technometrics 19, 185–190 (1977)

    Article  MATH  Google Scholar 

  49. Tong, H.: Non-Linear Time Series: A Dynamical System Approach. University Press, Oxford (1990)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nechval, N., Purgailis, M., Cikste, K., Berzins, G., Rozevskis, U., Nechval, K. (2010). Prediction Model Selection and Spare Parts Ordering Policy for Efficient Support of Maintenance and Repair of Equipment. In: Al-Begain, K., Fiems, D., Knottenbelt, W.J. (eds) Analytical and Stochastic Modeling Techniques and Applications. ASMTA 2010. Lecture Notes in Computer Science, vol 6148. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13568-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13568-2_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13567-5

  • Online ISBN: 978-3-642-13568-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics