Finite State Transducers with Intuition | SpringerLink
Skip to main content

Finite State Transducers with Intuition

  • Conference paper
Unconventional Computation (UC 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6079))

Included in the following conference series:

Abstract

Finite automata that take advice have been studied from the point of view of what is the amount of advice needed to recognize nonregular languages. It turns out that there can be at least two different types of advice. In this paper we concentrate on cases when the given advice contains zero information about the input word and the language to be recognized. Nonetheless some nonregular languages can be recognized in this way. The help-word is merely a sufficiently long word with nearly maximum Kolmogorov complexity. Moreover, any sufficiently long word with nearly maximum Kolmogorov complexity can serve as a help-word. Finite automata with such help can recognize languages not recognizable by nondeterministic nor probabilistic automata. We hope that mechanisms like the one considered in this paper may be useful to construct a mathematical model for human intuition.

The research was supported by Grant No. 09.1570 from the Latvian Council of Science and by Project 2009/0216/1DP/1.1.2.1.2/09/IPIA/VIA/004 from the European Social Fund.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ablayev, F.M., Freivalds, R.: Why Sometimes Probabilistic Algorithms Can Be More Effective. LNCS, vol. 233, pp. 1–14. Springer, Heidelberg (1986)

    Google Scholar 

  2. Alon, N., Spencer, J.H.: The Probabilistic Method. John Wiley & Sons, Chichester (2000)

    Book  MATH  Google Scholar 

  3. Bach, E., Shallit, J.: Algorithmic Number Theory, vol. 1. MIT Press, Cambridge (1996)

    MATH  Google Scholar 

  4. Bārzdiņš, J. (Barzdin, J.M.): On a Class of Turing Machines (Minsky Machines). Algebra i Logika 3(1) (1963) (Russian); Review in The Journal of Symbolic Logic 32(4), 523–524 (1967)

    Google Scholar 

  5. Damm, C., Holzer, M.: Automata that take advice. In: Hájek, P., Wiedermann, J. (eds.) MFCS 1995. LNCS, vol. 969, pp. 565–613. Springer, Heidelberg (1995)

    Google Scholar 

  6. Dwork, C., Stockmeyer, L.: Finite state verifiers I: the power of interaction. Journal of the Association for Computing Machinery 39(4), 800–828 (1992)

    MATH  MathSciNet  Google Scholar 

  7. Erdös, P.: Some remarks on the theory of graphs. Bulletin of the American Mathematical Society 53(4), 292–294 (1947)

    Article  MATH  MathSciNet  Google Scholar 

  8. Fagin, R.: Generalized First-Order Spectra and Polynomial-Time Recognizable Sets. In: Karp, R. (ed.) SIAM-AMS Proceedings of Complexity of Computation, vol. 7, pp. 27–41 (1974)

    Google Scholar 

  9. Freivalds, R. (Freivald, R.V.): Recognition of languages with high probability on different classes of automata. Dolady Akademii Nauk SSSR 239(1), 60–62 (1978) (Russian)

    Google Scholar 

  10. Freivalds, R.: Projections of Languages Recognizable by Probabilistic and Alternating Finite Multitape Automata. Information Processing Letters 13(4/5), 195–198 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  11. Freivalds, R.: Complexity of Probabilistic Versus Deterministic Automata. In: Barzdins, J., Bjorner, D. (eds.) Baltic Computer Science. LNCS, vol. 502, pp. 565–613. Springer, Heidelberg (1991)

    Chapter  Google Scholar 

  12. Freivalds, R.: Non-Constructive Methods for Finite Probabilistic Automata. International Journal of Foundations of Computer Science 19(3), 565–580 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  13. Freivalds, R.: Amount of nonconstructivity in finite automata. In: Maneth, S. (ed.) CIAA 2009. LNCS, vol. 5642, pp. 227–236. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  14. Freivalds, R.: Multiple usage of random bits by finite automata. Unpublished manuscript (2010)

    Google Scholar 

  15. Hilbert, D.: Uber die Theorie der algebraischen Formen. Mathematische Annalen 36, 473–534 (1890)

    Article  MathSciNet  Google Scholar 

  16. Karp, R.M., Lipton, R.: Turing machines that take advice. L’ Enseignement Mathematique 28, 191–209 (1982)

    MATH  MathSciNet  Google Scholar 

  17. Kolmogorov, A.N.: Three approaches to the quantitative definition of information. Problems in Information Transmission 1, 1–7 (1965)

    MathSciNet  Google Scholar 

  18. Levin, L.A.: On the notion of a random sequence. Soviet Mathematics Doklady 14, 1413–1416 (1973)

    MATH  Google Scholar 

  19. Martin-Löf, P.: The definition of random sequences. Information and Control 9(6), 602–619 (1966)

    Article  MathSciNet  Google Scholar 

  20. Li, M., Vitányi, P.M.B.: An Introduction to Kolmogorov Complexity and its Applications, 2nd edn. Springer, Heidelberg (1997)

    MATH  Google Scholar 

  21. Nishimura, H., Yamakami, T.: Polynomial time quantum computation with advice. Information Processing Letters 90(4), 195–204 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  22. Schnorr, C.-P.: A unified approach to the definition of random sequences. Mathematical Systems Theory 5(3), 246–258 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  23. Schnorr, C.-P.: Process Complexity and Effective Random Tests. Journal of Computer and System Sciences 7(4), 376–388 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  24. Spencer, J.: Nonconstructive methods in discrete mathematics. In: Rota, G.-C. (ed.) Studies in Mathematics, MAA, vol. 17, pp. 142–178 (1978)

    Google Scholar 

  25. Stearns, R.E., Hartmanis, J., Lewis II, P.M.: Hierarchies of memory limited computations. In: Proceedings of FOCS, pp. 179–190 (1965)

    Google Scholar 

  26. Tadaki, K., Yamakami, T., Lin, J.C.H.: Theory of One Tape Linear Time Turing Machines. In: Van Emde Boas, P., Pokorný, J., Bieliková, M., Štuller, J. (eds.) SOFSEM 2004. LNCS, vol. 2932, pp. 335–348. Springer, Heidelberg (2004)

    Google Scholar 

  27. Yamakami, T.: Swapping lemmas for regular and context-free languages with advice. The Computing Research Repository (CoRR), CoRR abs/0808.4122 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Agadzanyan, R., Freivalds, R. (2010). Finite State Transducers with Intuition. In: Calude, C.S., Hagiya, M., Morita, K., Rozenberg, G., Timmis, J. (eds) Unconventional Computation. UC 2010. Lecture Notes in Computer Science, vol 6079. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13523-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13523-1_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13522-4

  • Online ISBN: 978-3-642-13523-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics