Abstract
We study Life-like cellular automaton rule B2/S2345. This automaton exhibits a chaotic behavior yet capable for purposeful computation. The automaton implements Boolean gates via patterns which compete for the space when propagate in channels. Values of Boolean variables are encoded into two types of patterns — symmetric (False) and asymmetric (True). We construct basic logical gates and elementary arithmetical circuits by simulating logical signals using glider reactions taking place in the channels built of non-destructible still lifes. We design a binary adder of majority gates realised in rule B2/S2345.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Adamatzky, A. (ed.): Collision-Based Computing. Springer, Heidelberg (2002)
Adamatzky, A.: Hot ice computer. Physics Letters A 374(2), 264–271 (2009)
Adamatzky, A. (ed.): Game of Life Cellular Automata. Springer, Heidelberg (2010)
Adamatzky, A., Costello, B.L., Asai, T.: Reaction-Diffusion Computers. Elsevier, Amsterdam (2005)
Adamatzky, A., Martínez, G.J., Seck-Tuoh-Mora, J.C.: Phenomenology of reaction-diffusion binary-state cellular automata. Int. J. Bifurcation and Chaos 16(10), 1–21 (2006)
Adachi, S., Peper, F., Lee, J., Umeo, H.: Occurrence of gliders in an infinite class of Life-like cellular automata. In: Umeo, H., Morishita, S., Nishinari, K., Komatsuzaki, T., Bandini, S. (eds.) ACRI 2008. LNCS, vol. 5191, pp. 32–41. Springer, Heidelberg (2008)
Banks, E.R.: Information Processing and Transmission in Cellular Automata, Ph.D. thesis Department of Mechanical Engineering, MIT (1971)
Berlekamp, E.R., Conway, J.H., Guy, R.K.: Winning Ways for your Mathematical Plays, ch. 25, vol. 2. Academic Press, London (1982)
Chapman, P.: Life Universal Computer (2002), http://www.igblan.free-online.co.uk/igblan/ca/
Codd, E.F.: Cellular Automata. Academic Press, London (1968)
Cook, M.: Still Life Theory. In: [15], pp. 93–118 (2003)
Eppstein, D.: Growth and decay in Life-like cellular automata, arXiv:0911.2890v1 (nlin.CG) (2009)
Gardner, M.: Mathematical Games — The fantastic combinations of John H. Conway’s new solitaire game Life. Scientific American 223, 120–123 (1970)
Griffeath, D., Moore, C.: Life Without Death is P-complete. Complex Systems 10, 437–447 (1996)
Griffeath, D., Moore, C. (eds.): New constructions in cellular automata. Oxford University Press, Oxford (2003)
Goucher, A.: Completed Universal Computer/Constructor (2009), http://pentadecathlon.com/lifeNews/2009/08/post.html
Gravner, J.: Growth Phenomena in Cellular Automata. In: [15], pp. 161–181 (2003)
Hameroff, S.R.: Ultimate Computing: Biomolecular Consciousness and Nanotechnology. Elsevier Science Publishers BV, Amsterdam (1987)
Imai, K., Morita, K.: A computation-universal two-dimensional 8-state triangular reversible cellular automaton. Theoret. Comput. Sci. 231, 181–191 (2000)
Martínez, G.J., Adamatzky, A., Costello, B.L.: On logical gates in precipitating medium: cellular automaton model. Physics Letters A 1(48), 1–5 (2008)
Martínez, G.J., Adamatzky, A., McIntosh, H.V.: Localization dynamic in a binary two-dimensional cellular automaton: the Diffusion Rule. arXiv:0908.0828v1 (cs.FL) (2009)
Martínez, G.J., Adamatzky, A., McIntosh, H.V., Costello, B.L.: Computation by competing patterns: Life rule B2/S2345678. In: Adamatzky, A., et al. (eds.) Automata 2008: Theory and Applications of Cellular Automata. Luniver Press (2008)
McIntosh, H.V.: Life’s Still Lifes (1988), http://delta.cs.cinvestav.mx/~mcintosh
Minsky, M.: Computation: Finite and Infinite Machines. Prentice-Hall, Englewood Cliffs (1967)
Mitchell, M.: Life and evolution in computers. History and Philosophy of the Life Sciences 23, 361–383 (2001)
Magnier, M., Lattaud, C., Heudin, J.-K.: Complexity Classes in the Two-dimensional Life Cellular Automata Subspace. Complex Systems 11(6), 419–436 (1997)
Morita, K., Margenstern, M., Imai, K.: Universality of reversible hexagonal cellular automata. Theoret. Informatics Appl. 33, 535–550 (1999)
Martínez, G.J., Méndez, A.M., Zambrano, M.M.: Un subconjunto de autómata celular con comportamiento complejo en dos dimensiones (2005), http://uncomp.uwe.ac.uk/genaro/Papers/Papers_on_CA.html
Porod, W., Lent, C.S., Bernstein, G.H., Orlov, A.O., Amlani, I., Snider, G.L., Merz, J.L.: Quantum-dot cellular automata: computing with coupled quantum dots. Int. J. Electronics 86(5), 549–590 (1999)
Packard, N., Wolfram, S.: Two-dimensional cellular automata. J. Statistical Physics 38, 901–946 (1985)
Rendell, P.: Turing universality of the game of life. In: [1], pp. 513–540 (2002)
Rennard, J.P.: Implementation of Logical Functions in the Game of Life. In: [1], pp. 491–512 (2002)
Toffoli, T.: Non-Conventional Computers. In: Webster, J. (ed.) Encyclopedia of Electrical and Electronics Engineering, vol. 14, pp. 455–471. Wiley & Sons, Chichester (1998)
von Neumann, J.: Theory of Self-reproducing Automata. In: Burks, A.W. (ed. and completed). University of Illinois Press, Urbana (1966)
Wainwright, R. (ed.): Lifeline - A Quaterly Newsletter for Enthusiasts of John Conway’s Game of Life, vol. (1-11), (March 1971-September 1973)
Walus, K., Schulhof, G., Zhang, R., Wang, W., Jullien, G.A.: Circuit design based on majority gates for applications with quantum-dot cellular automata. In: Proceedings of IEEE Asilomar Conference on Signals, Systems, and Computers (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Martínez, G.J., Morita, K., Adamatzky, A., Margenstern, M. (2010). Majority Adder Implementation by Competing Patterns in Life-Like Rule B2/S2345. In: Calude, C.S., Hagiya, M., Morita, K., Rozenberg, G., Timmis, J. (eds) Unconventional Computation. UC 2010. Lecture Notes in Computer Science, vol 6079. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13523-1_12
Download citation
DOI: https://doi.org/10.1007/978-3-642-13523-1_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-13522-4
Online ISBN: 978-3-642-13523-1
eBook Packages: Computer ScienceComputer Science (R0)