Abstract
We discuss an approach to discovery of concurrent processes from data and domain knowledge. The approach is based on interactive rough-granular computing (IRGC) and is developed in the Wisdom Technology (WisTech) program. In IRGC, computations are performed in distributed environments using interaction of granules. Granules are of different complexity. They can represent sensor measurements, classifiers of complex vague concepts, models of processes, agents or their teams. Applications related to different domains are reported.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aggarwal, C. (ed.): Data Streams: Models and Algorithms. Springer, Berlin (2007)
Bargiela, A., Pedrycz, W.: Granular Computing: An Introduction. Kluwer Academic Publishers, Dordrecht (2003)
Bazan, J.G.: Hierarchical classifiers for complex spatio-temporal concepts. In: Peters, J.F., Skowron, A., Rybiński, H. (eds.) Transactions on Rough Sets IX. LNCS, vol. 5390, pp. 474–750. Springer, Heidelberg (2008)
Bazan, J., Peters, J.F., Skowron, A.: Behavioral pattern identification through rough set modelling. In: Ślęzak, D., Yao, J., Peters, J.F., Ziarko, W.P., Hu, X. (eds.) RSFDGrC 2005. LNCS (LNAI), vol. 3642, pp. 688–697. Springer, Heidelberg (2005)
Bazan, J., Skowron, A.: On-line elimination of non-relevant parts of complex objects in behavioral pattern identification. In: Pal, S.K., Bandyopadhyay, S., Biswas, S. (eds.) PReMI 2005. LNCS, vol. 3776, pp. 720–725. Springer, Heidelberg (2005)
Bazan, J., Peters, J.F., Skowron, A.: Behavioral pattern identification through rough set modelling. In: Ślęzak, D., Yao, J., Peters, J.F., Ziarko, W.P., Hu, X. (eds.) RSFDGrC 2005. LNCS (LNAI), vol. 3642, pp. 688–697. Springer, Heidelberg (2005)
Bazan, J., Skowron, A., Swiniarski, R.: Rough sets and vague concept approximation: From sample approximation to adaptive learning. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets V: Journal Subline. LNCS, vol. 4100, pp. 39–63. Springer, Heidelberg (2006)
Bazan, J., Kruczek, P., Bazan-Socha, S., Skowron, A., Pietrzyk, J.J.: Risk pattern identification in the treatment of infants with respiratory failure through rough set modeling. In: Proceedings of IPMU 2006, pp. 2650–2657. E.D.K. Éditions, Paris (2006)
Bazan, J., Kruczek, P., Bazan-Socha, S., Skowron, A., Pietrzyk, J.J.: Automatic planning of treatment of infants with respiratory failure through rough set modeling. In: Greco, S., Hata, Y., Hirano, S., Inuiguchi, M., Miyamoto, S., Nguyen, H.S., Słowiński, R. (eds.) RSCTC 2006. LNCS (LNAI), vol. 4259, pp. 418–427. Springer, Heidelberg (2006)
Bazan, J.: Rough sets and granular computing in behavioral pattern identification and planning. In: Pedrycz, W., et al. (eds.) [39], pp. 777–799 (2008)
Borrett, S.R., Bridewell, W., Langely, P., Arrigo, K.R.: A method for representing and developing process models. Ecological Complexity 4(1-2), 1–12 (2007)
Delimata, P., Moshkov, M., Skowron, A., Suraj, Z.: Inhibitory Rules in Data Analysis. In: A Rough Set Approach. Studies in Computational Intelligence, vol. 163, Springer, Heidelberg (2009)
Doherty, P., Łukaszewicz, W., Skowron, A., Szałas, A.: Knowledge Representation Techniques: A Rough Set Approach. Studies in Fuzziness and Soft Computing, vol. 202. Springer, Heidelberg (2006)
Feng, J., Jost, J., Minping, Q. (eds.): Network: From Biology to Theory. Springer, Berlin (2007)
Friedman, J.H.: Data mining and statistics. What’s the connection? Keynote Address. In: Proceedings of the 29th Symposium on the Interface: Computing Science and Statistics, Houston, Texas (May 1997)
Goldin, D., Smolka, S., Wegner, P.: Interactive Computation: The New Paradigm. Springer, Heidelberg (2006)
Hastie, T., Tibshirani, R., Friedman, J.H.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd edn. Springer, Heidelberg (2008)
Jankowski, A., Peters, J., Skowron, A., Stepaniuk, J.: Optimization in discovery of compound granules. Fundamenta Informaticae 85(1-4), 249–265 (2008)
Jankowski, A., Skowron, A.: A WisTech paradigm for intelligent systems. In: Peters, J.F., Skowron, A., Düntsch, I., Grzymała-Busse, J.W., Orłowska, E., Polkowski, L. (eds.) Transactions on Rough Sets VI. LNCS, vol. 4374, pp. 94–132. Springer, Heidelberg (2007)
Jankowski, A., Skowron, A.: Logic for artificial intelligence: The Rasiowa - Pawlak school perspective. In: Ehrenfeucht, A., Marek, V., Srebrny, M. (eds.) Andrzej Mostowski and Foundational Studies, pp. 106–143. IOS Press, Amsterdam (2007)
Jankowski, A., Skowron, A.: Wisdom Granular Computing. In: Pedrycz, W., et al. (eds.) [39], pp. 229–345 (2008)
Luck, M., McBurney, P., Preist, C.: Agent Technology. Enabling Next Generation Computing: A Roadmap for Agent Based Computing. AgentLink (2003)
de Medeiros, A.K.A., Weijters, A.J.M.M., van der Aalst, W.M.P.: Genetic process mining: An experimental evaluation. Data Mining and Knowledge Discovery 14, 245–304 (2007)
Mitchell, M.: Complex systems: Network thinking. Artificial Intelligence 170(18), 1194–1212 (2006)
Nguyen, H.S., Bazan, J., Skowron, A., Nguyen, S.H.: Layered learning for concept synthesis. In: Peters, J.F., Skowron, A., Grzymała-Busse, J.W., Kostek, B.z., Świniarski, R.W., Szczuka, M.S. (eds.) Transactions on Rough Sets I. LNCS, vol. 3100, pp. 187–208. Springer, Heidelberg (2004)
Nguyen, H.S., Skowron, A.: A rough granular computing in discovery of process models from data and domain knowledge. Journal of Chongqing University of Post and Telecommunications 20(3), 341–347 (2008)
Nguyen, H.S., Jankowski, A., Skowron, A., Stepaniuk, J., Szczuka, M.: Discovery of process models from data and domain knowledge: A rough-granular approach. In: Yao, J.T. (ed.) Novel Developments in Granular Computing: Applications for Advanced Human Reasoning and Soft Computation. IGI Global, Hershey (to appear)
Nguyen, T.T.: Eliciting domain knowledge in handwritten digit recognition. In: Pal, S.K., Bandyopadhyay, S., Biswas, S. (eds.) PReMI 2005. LNCS, vol. 3776, pp. 762–767. Springer, Heidelberg (2005)
Nguyen, T.T.: Outlier and exception analysis in rough sets and granular computing. In: Pedrycz, W., et al. (eds.) [39], pp. 823–834 (2008)
Nguyen, T.T., Skowron, A.: Rough-granular computing in human-centric information processing. In: Bargiela, A., Pedrycz, W. (eds.) Human-Centric Information Processing Through Granular Modelling. Studies in Computational Intelligence, Springer, Heidelberg (in press)
Nguyen, T.T., Willis, C.P., Paddon, D.J., Nguyen, S.H., Nguyen, H.S.: Learning Sunspot Classification. Fundamenta Informaticae 72(1-3), 295–309 (2006)
Pancerz, K., Suraj, Z.: Discovering concurrent models from data tables with the ROSECON. Fundamenta Informaticae 60(1-4), 251–268 (2004)
Papageorgiou, E.I., Stylios, C.D.: Fuzzy Cognitive Maps. In: Pedrycz, W., et al. (eds.) [39], pp. 755–774 (2008)
Pal, S.K., Polkowski, L., Skowron, A. (eds.): Rough-Neural Computing: Techniques for Computing with Words. Cognitive Technologies. Springer, Berlin (2004)
Pawlak, Z.: Rough sets. International Journal of Computer and Information Sciences 11, 341–356 (1982)
Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. System Theory, Knowledge Engineering and Problem Solving, vol. 9. Kluwer Academic Publishers, Dordrecht (1991)
Pawlak, Z.: Concurrent versus sequential: the rough sets perspective. Bulletin of the EATCS 48, 178–190 (1992)
Pawlak, Z., Skowron, A.: Rudiments of rough sets. Information Sciences 177(1), 3–27; Rough sets: Some extensions. Information Sciences 177(1), 28–40; Rough sets and boolean reasoning. Information Sciences 177(1), 41–73, (2007)
Pedrycz, W., Skowron, A., Kreinovich, V. (eds.): Handbook of Granular Computing. John Wiley & Sons, New York (2008)
Poggio, T., Smale, S.: The mathematics of learning: Dealing with data. Notices of the AMS 50(5), 537–544 (2003)
Polkowski, L., Skowron, A.: Rough mereology: A new paradigm for approximate reasoning. International Journal of Approximate Reasoning 51, 333–365 (1996)
Ramsay, J.O., Silverman, B.W.: Applied Functional Data Analysis. Springer, Berlin (2002)
Rissanen, J.: Minimum-description-length principle. In: Kotz, S., Johnson, N. (eds.) Encyclopedia of Statistical Sciences, pp. 523–527. John Wiley & Sons, New York (1985)
Roddick, J.F., Hornsby, K., Spiliopoulou, M.: An updated bibliography of temporal, spatial and spatio- temporal data mining research. In: Roddick, J., Hornsby, K.S. (eds.) TSDM 2000. LNCS (LNAI), vol. 2007, pp. 147–163. Springer, Heidelberg (2001)
Skowron, A., Suraj, Z.: Rough Sets and Concurrency. Bulletin of the Polish Academy of Sciences 41, 237–254 (1993)
Skowron, A., Suraj, Z.: Discovery of Concurrent Data Models from Experimental Tables: A Rough Set Approach. In: First International Conference on Knowledge Discovery and Data Mining, pp. 288–293. AAAI Press, Menlo Park (1995)
Skowron, A., Stepaniuk, J.: Tolerance approximation spaces. Fundamenta Informaticae 27, 245–253 (1996)
Skowron, A., Stepaniuk, J.: Information granules and rough-neural computing. In: Pal, S.K., Polkowski, L., Skowron, A. (eds.) Rough-Neural Computing: Techniques for Computing with Words, Cognitive Technologies, pp. 43–84. Springer, Heidelberg (2003)
Skowron, A., Stepaniuk, J.: Rough sets and granular computing: Toward rough-granular computing. In: Pedrycz, W., et al. (eds.) [39], pp. 425–448 (2008)
Skowron, A., Stepaniuk, J., Peters, J., Swiniarski, R.: Calculi of approximation spaces. Fundamenta Informaticae 72(1-3), 363–378 (2006)
Skowron, A., Szczuka, M.: Toward interactive computations: A rough-granular approach. In: Koronacki, J., Wierzchon, S.T., Ras, Z.W., Kacprzyk, J. (eds.) Advances in Machine learning II, Dedicated to the memory of Ryszard Michalski. Studies in Computational Intelligence, vol. 263, pp. 23–42. Springer, Heidelberg (2010)
Skowron, A., Bazan, J.G., Wojnarski, M.: Interactive rough-granular computing in pattern recognition. In: Chaudhury, S., Mitra, S., Murthy, C.A., Sastry, P.S., Pal, S.K. (eds.) PReMI 2009. LNCS (LNAI), vol. 5909, pp. 92–97. Springer, Heidelberg (2009)
Skowron, A., Synak, P.: Complex patterns. Fundamenta Informaticae 60(1-4), 351–366 (2004)
Ślȩzak, D.: Approximate entropy reducts. Fundamenta Informaticae 53(3-4), 365–387 (2002)
Sun, R. (ed.): Cognition and Multi-Agent Interaction. From Cognitive Modeling to Social Simulation. Cambridge University Press, New York (2006)
Suraj, Z.: Rough set methods for the synthesis and analysis of concurrent processes. In: Polkowski, L., Lin, T.Y., Tsumoto, S. (eds.) Rough Set Methods and Applications: New Developments in Knowledge Discovery in Information Systems. Studies in Fuzziness and Soft Computing, vol. 56, pp. 379–488. Springer/Physica, Heidelberg (2000)
Unnikrishnan, K.P., Ramakrishnan, N., Sastry, P.S., Uthurusamy, R.: Network Reconstruction from Dynamic Data. SIGKDD Explorations 8(2), 90–91 (2006)
Wegner, P.: Why interaction is more powerful than algorithms. Communications of the ACM 40(5), 80–91 (1997)
Wu, F.-X.: Inference of gene regulatory networks and its validation. Current Bioinformatics 2(2), 139–144 (2007)
Zadeh, L.A.: A new direction in AI-toward a computational theory of perceptions. AI Magazine 22(1), 73–84 (2001)
Zadeh, L.A.: Generalized theory of uncertainty (GTU)-principal concepts and ideas. Computational Statistics and Data Analysis 51, 15–46 (2006)
The Rough Set Interactive Classificstion Engine (RoughICE) homepage, http://logic.mimuw.edu.pl/~bazan/roughice
The Rough Set Exploration System (RSES) homepage, http://logic.mimuw.edu.pl/~rses
The RSES-lib project homepage, http://rsproject.mimuw.edu.pl
The road simulator homepage, http://logic.mimuw.edu.pl/~bazan/simulator
The TunedIT platform homepage, http://tunedit.org/
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Skowron, A. (2010). Discovery of Processes and Their Interactions from Data and Domain Knowledge. In: Jędrzejowicz, P., Nguyen, N.T., Howlet, R.J., Jain, L.C. (eds) Agent and Multi-Agent Systems: Technologies and Applications. KES-AMSTA 2010. Lecture Notes in Computer Science(), vol 6070. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13480-7_3
Download citation
DOI: https://doi.org/10.1007/978-3-642-13480-7_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-13479-1
Online ISBN: 978-3-642-13480-7
eBook Packages: Computer ScienceComputer Science (R0)