Abstract
The Tschirnhausen cubic represents all non-degenerate Pythagorean Hododgraph cubics. We determine its support function and represent it as a convolution of a centrally symmetrical curve and a curve with linear normals. We use the support function to parametrize the Tschirnhausen cubic by normals. This parametrization is then used to an elegant and complete solution of the G 1 Hermite interpolation by Pythagorean Hodograph cubics. We apply the resulting algorithm to various examples and extend it to the interpolation by offsets of PH cubics.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aigner, M., Gonzalez-Vega, L., Jüttler, B., Schicho, J.: Parameterizing surfaces with certain special support functions, including offsets of quadrics and rationally supported surfaces. Symbolic Comput. 44(2), 180–191 (2009)
Aigner, M., Gonzalez-Vega, L., Jüttler, B., Sampoli, M.L.: Computing isophotes on free-form surfaces based on support function approximation. In: Hancock, E.R., Martin, R.R., Sabin, M.A. (eds.) Mathematics of Surfaces XIII. LNCS, vol. 5654, pp. 1–18. Springer, Heidelberg (2009)
Bonnesen, T., Fenchel, W.: Theory of convex bodies. BCS Associates, Moscow (1987)
Byrtus, M., Bastl, B.: G1 Hermite interpolation by PH cubics revisited. Submitted to Computer Aided Geometric Design, 20xx
Farouki, R.T., Sakkalis, T.: Pythagorean hodographs. IBM J. Res. Develop. 34, 736–752 (1990)
Farouki, R.T.: Pythagorean hodograph curves. In: Farin, G., Hoschek, J., Kim, M.-S. (eds.) Handbook of Computer Aided Geometric Design, pp. 405–427. North-Holland, Amsterdam
Farouki, R.T.: Pythagorean-hodograph curves: Algebra and Geometry Inseparable. In: Geometry and Computing. Springer, Heidelberg (2008)
Gravesen, J., Jüttler, B., Šír, Z.: On rationally supported surfaces. Comput. Aided Geom. Design 5(4-5), 320–331 (2008)
Gravesen, J.: Surfaces parametrised by the normals. Computing 79, 175–183 (2007)
Groemer, H.: Geometric Applications of Fourier Series and Spherical Harmonics. Cambridge University Press, Cambridge (1996)
Gruber, P.M., Wills, J.M.: Handbook of convex geometry. North–Holland, Amsterdam (1993)
Jüttler, B.: Hermite interpolation by Pythagorean hodograph curves of degree seven. Math. Comp. 70, 1089–1111 (2001)
Kubota, K.K.: Pythagorean Triples in Unique Factorization Domains. Amer. Math. Monthly 79, 503–505 (1972)
Meek, D.S., Walton, D.J.: Geometric Hermite interpolation with Tschirnhausen cubics. Journal of Computational and Applied Mathematics 81, 299–309 (1997)
Moon, H.P., Farouki, R.T., Choi, H.I.: Construction and shape analysis of PH quintic Hermite interpolants. Comp. Aided Geom. Design 18, 93–115 (2001)
Sabin, M.: A Class of Surfaces Closed under Five Important Geometric Operations, Technical report no. VTO/MS/207, British aircraft corporation (1974), http://www.damtp.cam.ac.uk/user/na/people/Malcolm/vtoms/vtos.htm
Šír, Z., Jüttler, B.: Constructing acceleration continuous tool paths using pythagorean hodograph curves. Mech. Mach. Theory 40(11), 1258–1272 (2005)
Šír, Z., Gravesen, J., Jüttler, B.: Curves and surfaces represented by polynomial support functions. Theor. Comput. Sci. 392(1-3), 141–157 (2008)
Šír, Z., Gravesen, J., Jüttler, B.: Computing Minkowski sums via Support Function Representation. In: Chenin, P., Lyche, T., Schumaker, L. (eds.) Curve and Surface Design: Avignon 2006, pp. 244–253. Nashboro Press, Brentwood (2007)
Šír, Z., Bastl, B., Lávička, M.: Hermite interpolation by hypocycloids and epicycloids with rational offsets. Comput. Aided Geom. Design (2010), doi:10.1016/j.cagd.2010.02.001
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Černohorská, E., Šír, Z. (2010). Support Function of Pythagorean Hodograph Cubics and G 1 Hermite Interpolation. In: Mourrain, B., Schaefer, S., Xu, G. (eds) Advances in Geometric Modeling and Processing. GMP 2010. Lecture Notes in Computer Science, vol 6130. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13411-1_3
Download citation
DOI: https://doi.org/10.1007/978-3-642-13411-1_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-13410-4
Online ISBN: 978-3-642-13411-1
eBook Packages: Computer ScienceComputer Science (R0)