Support Function of Pythagorean Hodograph Cubics and G 1 Hermite Interpolation | SpringerLink
Skip to main content

Support Function of Pythagorean Hodograph Cubics and G 1 Hermite Interpolation

  • Conference paper
Advances in Geometric Modeling and Processing (GMP 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6130))

Included in the following conference series:

  • 1217 Accesses

Abstract

The Tschirnhausen cubic represents all non-degenerate Pythagorean Hododgraph cubics. We determine its support function and represent it as a convolution of a centrally symmetrical curve and a curve with linear normals. We use the support function to parametrize the Tschirnhausen cubic by normals. This parametrization is then used to an elegant and complete solution of the G 1 Hermite interpolation by Pythagorean Hodograph cubics. We apply the resulting algorithm to various examples and extend it to the interpolation by offsets of PH cubics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aigner, M., Gonzalez-Vega, L., Jüttler, B., Schicho, J.: Parameterizing surfaces with certain special support functions, including offsets of quadrics and rationally supported surfaces. Symbolic Comput. 44(2), 180–191 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  2. Aigner, M., Gonzalez-Vega, L., Jüttler, B., Sampoli, M.L.: Computing isophotes on free-form surfaces based on support function approximation. In: Hancock, E.R., Martin, R.R., Sabin, M.A. (eds.) Mathematics of Surfaces XIII. LNCS, vol. 5654, pp. 1–18. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  3. Bonnesen, T., Fenchel, W.: Theory of convex bodies. BCS Associates, Moscow (1987)

    MATH  Google Scholar 

  4. Byrtus, M., Bastl, B.: G1 Hermite interpolation by PH cubics revisited. Submitted to Computer Aided Geometric Design, 20xx

    Google Scholar 

  5. Farouki, R.T., Sakkalis, T.: Pythagorean hodographs. IBM J. Res. Develop. 34, 736–752 (1990)

    Article  MathSciNet  Google Scholar 

  6. Farouki, R.T.: Pythagorean hodograph curves. In: Farin, G., Hoschek, J., Kim, M.-S. (eds.) Handbook of Computer Aided Geometric Design, pp. 405–427. North-Holland, Amsterdam

    Google Scholar 

  7. Farouki, R.T.: Pythagorean-hodograph curves: Algebra and Geometry Inseparable. In: Geometry and Computing. Springer, Heidelberg (2008)

    Google Scholar 

  8. Gravesen, J., Jüttler, B., Šír, Z.: On rationally supported surfaces. Comput. Aided Geom. Design 5(4-5), 320–331 (2008)

    Google Scholar 

  9. Gravesen, J.: Surfaces parametrised by the normals. Computing 79, 175–183 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  10. Groemer, H.: Geometric Applications of Fourier Series and Spherical Harmonics. Cambridge University Press, Cambridge (1996)

    Book  MATH  Google Scholar 

  11. Gruber, P.M., Wills, J.M.: Handbook of convex geometry. North–Holland, Amsterdam (1993)

    Google Scholar 

  12. Jüttler, B.: Hermite interpolation by Pythagorean hodograph curves of degree seven. Math. Comp. 70, 1089–1111 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  13. Kubota, K.K.: Pythagorean Triples in Unique Factorization Domains. Amer. Math. Monthly 79, 503–505 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  14. Meek, D.S., Walton, D.J.: Geometric Hermite interpolation with Tschirnhausen cubics. Journal of Computational and Applied Mathematics 81, 299–309 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  15. Moon, H.P., Farouki, R.T., Choi, H.I.: Construction and shape analysis of PH quintic Hermite interpolants. Comp. Aided Geom. Design 18, 93–115 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  16. Sabin, M.: A Class of Surfaces Closed under Five Important Geometric Operations, Technical report no. VTO/MS/207, British aircraft corporation (1974), http://www.damtp.cam.ac.uk/user/na/people/Malcolm/vtoms/vtos.htm

  17. Šír, Z., Jüttler, B.: Constructing acceleration continuous tool paths using pythagorean hodograph curves. Mech. Mach. Theory 40(11), 1258–1272 (2005)

    Article  MATH  Google Scholar 

  18. Šír, Z., Gravesen, J., Jüttler, B.: Curves and surfaces represented by polynomial support functions. Theor. Comput. Sci. 392(1-3), 141–157 (2008)

    Article  MATH  Google Scholar 

  19. Šír, Z., Gravesen, J., Jüttler, B.: Computing Minkowski sums via Support Function Representation. In: Chenin, P., Lyche, T., Schumaker, L. (eds.) Curve and Surface Design: Avignon 2006, pp. 244–253. Nashboro Press, Brentwood (2007)

    Google Scholar 

  20. Šír, Z., Bastl, B., Lávička, M.: Hermite interpolation by hypocycloids and epicycloids with rational offsets. Comput. Aided Geom. Design (2010), doi:10.1016/j.cagd.2010.02.001

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Černohorská, E., Šír, Z. (2010). Support Function of Pythagorean Hodograph Cubics and G 1 Hermite Interpolation. In: Mourrain, B., Schaefer, S., Xu, G. (eds) Advances in Geometric Modeling and Processing. GMP 2010. Lecture Notes in Computer Science, vol 6130. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13411-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13411-1_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13410-4

  • Online ISBN: 978-3-642-13411-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics