The max quasi-independent set Problem | SpringerLink
Skip to main content

The max quasi-independent set Problem

  • Conference paper
Computer Science – Theory and Applications (CSR 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6072))

Included in the following conference series:

Abstract

In this paper, we deal with the problem of finding quasi-independent sets in graphs. This problem is formally defined in three versions, which are shown to be polynomially equivalent. The one that looks most general, namely, f-QIS, consists of, given a graph and a non-decreasing function f, finding a maximum size subset Q of the vertices of the graph, such that the number of edges in the induced subgraph is less than or equal to f(|Q|). For this problem, we show an exact solution method that runs within time \(O^*(2^{\frac{d-27/23}{d+1}n})\) on graphs of average degree bounded by d. For the most specifically defined γ-QIS and k-QIS problems, several results on complexity and approximation are shown, and greedy algorithms are proposed, analyzed and tested.

This work is partially supported by the French Agency for Research under the DEFIS program TODO, ANR-09-EMER-010.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abello, J., Resende, M.G.C., Sudarsky, S.: Massive quasi-clique detection. In: Rajsbaum, S. (ed.) LATIN 2002. LNCS, vol. 2286, pp. 598–612. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  2. Asahiro, Y., Iwama, K., Tamaki, H., Tokuyama, T.: Greedily finding a dense subgraph. Journal of Algorithms 34(2), 203–221 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  3. Boginski, V., Butenko, S., Pardalos, P.: Mining market data: a network approach. Computers and Operations Research (2005), http://www.sciencedirect.com

  4. Bourgeois, N., Giannakos, A., Lucarelli, G., Milis, I., Paschos, V.T., Pottié, O.: The The Max Quasi-Independent Set Problem. Cahier du LAMSADE (292) (2010)

    Google Scholar 

  5. Corneil, D.G., Perl, Y.: Clustering and domination in perfect graphs. Discrete Applied Mathematics 9, 27–39 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  6. Feige, U., Kortsarz, G., Peleg, D.: The dense k-subgraph problem. Algorithmica 29(3), 410–421 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  7. Halldórsson, M.M., Radhakrishnan, J.: Greed is good: approximating independent sets in sparse and bounded-degree graphs. In: Proceedings of STOC 1994, pp. 439–448 (1994)

    Google Scholar 

  8. Hartwell, L.H., Hopfield, J.J., Leibler, S., Murray, A.W.: From molecular to modular cell biology. Nature 402, C47–C52 (1999)

    Article  Google Scholar 

  9. Hochbaum, D.S., Goldschmidt, O.: k-edge subgraph problems. Discrete Applied Mathematics 74(2), 159–169 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  10. Krishnamoorthy, M.S., Deo, N.: Node-deletion NP-complete problems. SIAM J. Comput. 8, 619–625 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  11. Yannakakis, M., Lewis, J.: The node-deletion problem for hereditary properties is NP-complete. Journal of Computer and System Sciences 20(2), 219–230 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  12. Zissimopoulos, V.: Private communication

    Google Scholar 

  13. Zuckerman, D.: Linear degree extractors and the inapproximability of max clique and chromatic number. In: Proceedings of STOC 2006, pp. 681–690 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bourgeois, N., Giannakos, A., Lucarelli, G., Milis, I., Paschos, V.T., Pottié, O. (2010). The max quasi-independent set Problem. In: Ablayev, F., Mayr, E.W. (eds) Computer Science – Theory and Applications. CSR 2010. Lecture Notes in Computer Science, vol 6072. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13182-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13182-0_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13181-3

  • Online ISBN: 978-3-642-13182-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics