Abstract
Given a directed graph G = (V,A), the Directed Maximum Leaf Spanning Tree problem asks to compute a directed spanning tree with as many leaves as possible. By designing a branching algorithm analyzed with Measure&Conquer, we show that the problem can be solved in time \({\mathcal{O}}^*({1.9044}^n)\) using polynomial space. Allowing exponential space, this run time upper bound can be lowered to \({\mathcal{O}}^*(1.8139^n)\).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Blum, J., Ding, M., Thaeler, A., Cheng, X.: Connected dominating set in sensor networks and MANETs. In: Handbook of Combinatorial Optimization, vol. B, pp. 329–369. Springer, Heidelberg (2005)
Daligault, J., Gutin, G., Kim, E.J., Yeo, A.: FPT algorithms and kernels for the directed k-leaf problem. Journal of Computer and System Sciences 76(2), 144–152 (2010)
Daligault, J., Thomassé, S.: On finding directed trees with many leaves. In: Chen, J., Fomin, F.V. (eds.) Parameterized and Exact Computation, 4th International Workshop, IWPEC. LNCS, vol. 5917, pp. 86–97. Springer, Heidelberg (2009)
Drescher, M., Vetta, A.: An approximation algorithm for the Maximum Leaf Spanning Arborescence problem. ACM Transactions on Algorithms (in Press, 2008)
Fernau, H., Fomin, F.V., Lokshtanov, D., Raible, D., Saurabh, S., Villanger, Y.: Kernel(s) for problems with no kernel: On out-trees with many leaves. In: STACS. Dagstuhl Seminar Proceedings, vol. 09001, pp. 421–432 (2009)
Fernau, H., Kneis, J., Kratsch, D., Langer, A., Liedloff, M., Raible, D., Rossmanith, P.: An exact algorithm for the Maximum Leaf Spanning Tree problem. In: Chen, J., Fomin, F.V. (eds.) Parameterized and Exact Computation, 4th International Workshop, IWPEC. LNCS, vol. 5917, pp. 161–172. Springer, Heidelberg (2009)
Fomin, F.V., Grandoni, F., Kratsch, D.: A measure & conquer approach for the analysis of exact algorithms. Journal of the ACM 56(5) (2009)
Kneis, J., Langer, A., Rossmanith, P.: A new algorithm for finding trees with many leaves. In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 270–281. Springer, Heidelberg (2008)
Koutis, I., Williams, R.: Limits and applications of group algebras for parameterized problems. In: ICALP (1). LNCS, vol. 5555, pp. 653–664. Springer, Heidelberg (2009)
Raible, D., Fernau, H.: An amortized search tree analysis for k-Leaf Spanning Tree. In: van Leeuwen, J. (ed.) SOFSEM 2010. LNCS, vol. 5901, pp. 672–684. Springer, Heidelberg (2009)
Raman, V., Saurabh, S.: Parameterized algorithms for feedback set problems and their duals in tournaments. Theoretical Computer Science 351, 446–458 (2006)
Thai, M.T., Wang, F., Liu, D., Zhu, S., Du, D.-Z.: Connected dominating sets in wireless networks different transmission ranges. IEEE Trans. Mobile Computing 6, 1–10 (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Binkele-Raible, D., Fernau, H. (2010). A Faster Exact Algorithm for the Directed Maximum Leaf Spanning Tree Problem. In: Ablayev, F., Mayr, E.W. (eds) Computer Science – Theory and Applications. CSR 2010. Lecture Notes in Computer Science, vol 6072. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13182-0_31
Download citation
DOI: https://doi.org/10.1007/978-3-642-13182-0_31
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-13181-3
Online ISBN: 978-3-642-13182-0
eBook Packages: Computer ScienceComputer Science (R0)