A Faster Exact Algorithm for the Directed Maximum Leaf Spanning Tree Problem | SpringerLink
Skip to main content

A Faster Exact Algorithm for the Directed Maximum Leaf Spanning Tree Problem

  • Conference paper
Computer Science – Theory and Applications (CSR 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6072))

Included in the following conference series:

Abstract

Given a directed graph G = (V,A), the Directed Maximum Leaf Spanning Tree problem asks to compute a directed spanning tree with as many leaves as possible. By designing a branching algorithm analyzed with Measure&Conquer, we show that the problem can be solved in time \({\mathcal{O}}^*({1.9044}^n)\) using polynomial space. Allowing exponential space, this run time upper bound can be lowered to \({\mathcal{O}}^*(1.8139^n)\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Blum, J., Ding, M., Thaeler, A., Cheng, X.: Connected dominating set in sensor networks and MANETs. In: Handbook of Combinatorial Optimization, vol. B, pp. 329–369. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  2. Daligault, J., Gutin, G., Kim, E.J., Yeo, A.: FPT algorithms and kernels for the directed k-leaf problem. Journal of Computer and System Sciences 76(2), 144–152 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  3. Daligault, J., Thomassé, S.: On finding directed trees with many leaves. In: Chen, J., Fomin, F.V. (eds.) Parameterized and Exact Computation, 4th International Workshop, IWPEC. LNCS, vol. 5917, pp. 86–97. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  4. Drescher, M., Vetta, A.: An approximation algorithm for the Maximum Leaf Spanning Arborescence problem. ACM Transactions on Algorithms (in Press, 2008)

    Google Scholar 

  5. Fernau, H., Fomin, F.V., Lokshtanov, D., Raible, D., Saurabh, S., Villanger, Y.: Kernel(s) for problems with no kernel: On out-trees with many leaves. In: STACS. Dagstuhl Seminar Proceedings, vol. 09001, pp. 421–432 (2009)

    Google Scholar 

  6. Fernau, H., Kneis, J., Kratsch, D., Langer, A., Liedloff, M., Raible, D., Rossmanith, P.: An exact algorithm for the Maximum Leaf Spanning Tree problem. In: Chen, J., Fomin, F.V. (eds.) Parameterized and Exact Computation, 4th International Workshop, IWPEC. LNCS, vol. 5917, pp. 161–172. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  7. Fomin, F.V., Grandoni, F., Kratsch, D.: A measure & conquer approach for the analysis of exact algorithms. Journal of the ACM 56(5) (2009)

    Google Scholar 

  8. Kneis, J., Langer, A., Rossmanith, P.: A new algorithm for finding trees with many leaves. In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 270–281. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  9. Koutis, I., Williams, R.: Limits and applications of group algebras for parameterized problems. In: ICALP (1). LNCS, vol. 5555, pp. 653–664. Springer, Heidelberg (2009)

    Google Scholar 

  10. Raible, D., Fernau, H.: An amortized search tree analysis for k-Leaf Spanning Tree. In: van Leeuwen, J. (ed.) SOFSEM 2010. LNCS, vol. 5901, pp. 672–684. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  11. Raman, V., Saurabh, S.: Parameterized algorithms for feedback set problems and their duals in tournaments. Theoretical Computer Science 351, 446–458 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  12. Thai, M.T., Wang, F., Liu, D., Zhu, S., Du, D.-Z.: Connected dominating sets in wireless networks different transmission ranges. IEEE Trans. Mobile Computing 6, 1–10 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Binkele-Raible, D., Fernau, H. (2010). A Faster Exact Algorithm for the Directed Maximum Leaf Spanning Tree Problem. In: Ablayev, F., Mayr, E.W. (eds) Computer Science – Theory and Applications. CSR 2010. Lecture Notes in Computer Science, vol 6072. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13182-0_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13182-0_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13181-3

  • Online ISBN: 978-3-642-13182-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics