Skin Lesions Characterisation Utilising Clustering Algorithms | SpringerLink
Skip to main content

Skin Lesions Characterisation Utilising Clustering Algorithms

  • Conference paper
Artificial Intelligence: Theories, Models and Applications (SETN 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6040))

Included in the following conference series:

Abstract

In this paper we propose a clustering technique for the recognition of pigmented skin lesions in dermatological images. It is known that computer vision-based diagnosis systems have been used aiming mostly at the early detection of skin cancer and more specifically the recognition of malignant melanoma tumour. The feature extraction is performed utilising digital image processing methods, i.e. segmentation, border detection, colour and texture processing. The proposed method belongs to a class of clustering algorithms which are very successful in dealing with high dimensional data, utilising information driven by the Principal Component Analysis. Experimental results show the high performance of the algorithm against other methods of the same class.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Boley, D.: Principal direction divisive partitioning. Data Mining and Knowledge Discovery 2(4), 325–344 (1998)

    Article  Google Scholar 

  2. Chung, D.H., Sapiro, G.: Segmenting skin lesions with partial-differential-equations-based image processing algorithms. IEEE Transactions on Medical Imaging 19(7), 763–767 (2000)

    Article  Google Scholar 

  3. Dhillon, I., Kogan, J., Nicholas, C.: Feature selection and document clustering. A Comprehensive Survey of Text Mining, 73–100 (2003)

    Google Scholar 

  4. Dhillon, I.S.: Co-clustering documents and words using bipartite spectral graph partitioning. In: Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 269–274. ACM, New York (2001)

    Chapter  Google Scholar 

  5. Greengard, L., Strain, J.: The fast gauss transform. SIAM J. Sci. Stat. Comput. 12(1), 79–94 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  6. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Computing Surveys 31(3), 264–323 (1999), citeseer.ist.psu.edu/jain99data.html

    Article  Google Scholar 

  7. Maglogiannis, I.: Automated segmentation and registration of dermatological images, vol. 2, pp. 277–294. Springer, Heidelberg (2003)

    Google Scholar 

  8. Maglogiannis, I., Pavlopoulos, S., Koutsouris, D.: An integrated computer supported acquisition, handling and characterization system for pigmented skin lesions in dermatological images. IEEE Transactions on Information Technology in Biomedicine 9(1), 86–98 (2005)

    Article  Google Scholar 

  9. Maglogiannis, I., Doukas, C.: Overview of advanced computer vision systems for skin lesions characterization. IEEE Transactions on Information Technology in Biomedicine 13(5), 721–733 (2009)

    Article  Google Scholar 

  10. Marks, R.: Epidemiology of melanoma. Clin. Exp. Dermatol. 25, 459–463 (2000)

    Article  Google Scholar 

  11. Nachbar, F., Stolz, W., Merkle, T., Cognetta, A.B., Vogt, T., Landthaler, M., Bilek, P., Braun-Falco, O., Plewig, G.: The abcd rule of dermatoscopy: High prospective value in the diagnosis of doubtful melanocytic skin lesions. J. Amer. Acad. Dermatol. 30(4), 551–559 (1994)

    Article  Google Scholar 

  12. Nilsson, M.: Hierarchical Clustering using non-greedy principal direction divisive partitioning. Information Retrieval 5(4), 311–321 (2002)

    Article  Google Scholar 

  13. Pariser, R., Pariser, D.: Primary care physicians errors in handling cutaneous disorders. J. Am. Acad. Dermatol. 17(3), 239–245 (1987)

    Article  Google Scholar 

  14. Sanders, J.E., Goldstein, B.S., Leotta, D.F., Richards, K.A.: Image processing techniques for quantitative analysis of skin structures. Computer Methods and Programs in Biomedicine 59(3), 167–180 (1999)

    Article  Google Scholar 

  15. Stoecker, W.V., Li, W.W., Moss, R.H.: Automatic detection of asymmetry in skin tumors. Computerized Med. Imag. Graph 16(3), 191–197 (1992)

    Article  Google Scholar 

  16. Tasoulis, S.K., Plagianakos, V.P., Tasoulis, D.K.: Projection based clustering at gene expression data. In: Computational intelligence methods for bioinformatics and biostatistics, Genova, Italy (2009)

    Google Scholar 

  17. Tasoulis, S., Tasoulis, D.: Improving principal direction divisive clustering. In: 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2008), Workshop on Data Mining using Matrices and Tensors (2008)

    Google Scholar 

  18. Zhao, Y., Karypis, G.: Empirical and theoretical comparisons of selected criterion functions for document clustering. Machine Learning 55(3), 311–331 (2004)

    Article  MATH  Google Scholar 

  19. Yang, C., Duraiswami, R., Gumerov, N.A., Davis, L.: Improved fast gauss transform and efficient kernel density estimation. In: Proceedings of Ninth IEEE International Conference on Computer Vision 2003, pp. 664–671 (2003)

    Google Scholar 

  20. Zeimpekis, D., Gallopoulos, E.: Principal direction divisive partitioning with kernels and k-means steering. In: Survey of Text Mining II: Clustering, Classification, and Retrieval, pp. 45–64 (2007)

    Google Scholar 

  21. Zhang, Z., Stoecker, W., Moss, R.: Border detection on digitized skin tumor image. IEEE Transactions on Medical Imaging 19(11), 1128–1143 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tasoulis, S.K., Doukas, C.N., Maglogiannis, I., Plagianakos, V.P. (2010). Skin Lesions Characterisation Utilising Clustering Algorithms. In: Konstantopoulos, S., Perantonis, S., Karkaletsis, V., Spyropoulos, C.D., Vouros, G. (eds) Artificial Intelligence: Theories, Models and Applications. SETN 2010. Lecture Notes in Computer Science(), vol 6040. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12842-4_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12842-4_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12841-7

  • Online ISBN: 978-3-642-12842-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics