From Research to Operations: The USDA Global Reservoir and Lake Monitor | SpringerLink
Skip to main content

From Research to Operations: The USDA Global Reservoir and Lake Monitor

  • Chapter
  • First Online:
Coastal Altimetry

Abstract

The Global Reservoir and Lake Monitor (GRLM) records variations in surface water height for approximately 70 lakes and reservoirs worldwide using a combination of satellite radar altimetry data sets. The project was initiated by the U.S. Department of Agriculture’s (USDA) Foreign Agricultural Service (FAS) in cooperation with the National Aeronautic and Space Administration’s (NASA) Goddard Space Flight Center (GSFC) and the University of Maryland (UMD). On-line since the end of 2003, the program focuses on the delivery of near-real-time products within an operational framework and exists within the USDA’s decision support system (DSS) through the larger cooperative USDA/NASA Global Agricultural Monitoring (GLAM) program. Currently, near-real-time products are derived from the NASA/Centre National d’Etudes Spatiales (CNES) Jason-1 mission (post-2002) with archival products derived from the NASA/CNES TOPEX/Poseidon mission (1992–2002) and the US Naval Research Lab’s (NRL) Geosat follow-on (GFO) mission (2000–2008). Validation exercises show that the products vary in accuracy from a few centimeters RMS (root mean square) to several tens of centimeters RMS depending on the target size and surface wave conditions. On a weekly basis, new satellite data are retrieved and products updated. Output is in the form of graphs and text files with web links to other imaging and information resources. The next phase of the program sees an expansion to over 500 lakes and reservoirs via the incorporation of products derived from the European Space Agency (ESA) remote sensing satellites (ERS-1 and ERS-2, 1992–2008) and the ESA environmental satellite ENVISAT (post-2002). Near-real-time products will also be continued via data from the follow-on Jason-2 mission (post-2009). The USDA/FAS utilize the products for irrigation potential considerations and as general indicators of drought and high-water conditions. The monitoring system thus has relevance to water resources management and agriculture efficiency at both the national and international level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 23520
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 29400
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 31459
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ALT:

NASA Radar Altimeter

AVISO:

Archiving, Validation and Interpretation of Satellite Oceanographic data

CNES:

Centre National d’Études Spatiales

CSR:

Center for Space Research (University of Texas, Austin)

DDP:

Defect Detection and Prevention

DESDynI:

Deformation, Ecosystem Structure and Dynamics of Ice

DORIS:

Doppler Orbit Determination Radiopositioning Integrated on Satellite

DSS:

Decision Support System

Envisat:

Environmental Satellite

ERS:

European Remote Sensing Satellite

ESA:

European Space Agency

ESRI:

Environmental Systems Research Institute

EUMETSAT:

European Org. for the Exploitation of Meteorological Satellites

FAS:

Foreign Agricultural Service

FEWS:

Famine Early Warning Systems

GDR:

Geophysical Data Record

GEO:

United States Group on Earth Observations

GEOSS:

Global Earth Observation System of Systems

GFO:

Geosat Follow-On Mission

GIM:

Global Ionospheric Map

GLAM:

Global Agricultural Monitoring Program

GLIN:

Great Lakes Information Network

GPS:

Global Positioning System

GRACE:

Gravity Recovery and Climate Experiment

GRLM:

Global Reservoir and Lake Monitor

GSFC:

Goddard Space Flight Center

GUI:

Graphical User Interface

ICESat:

Ice, Cloud and Land Elevation Satellite

IGDR:

Intermediate Geophysical Data Record

IPCC:

Intergovernmental Panel on Climate Change

IRI:

International Reference Ionosphere Model

ISRO:

Indian Space Research Organization

ISS:

Integrated Systems Solution

ITRF:

International Terrestrial Reference Frame

ITSS:

Information Technology and Scientific Services

JPL:

Jet Propulsion Laboratory

LAD:

Least Absolute Deviation

LakeNet:

World Lakes Network

LEGOS:

Laboratoire d’Études en Géophysique et Océanographie Spatiales

MODIS:

MODerate resolution Imaging Spectroradiometer

MOE:

Medium Precision Orbit Ephemerides

NASA:

National Aeronautic and Space Administration

NCEP:

National Centers for Environmental Prediction

NGA:

National Geospatial Intelligence Agency

NOAA:

National Oceanic and Atmospheric Administration

NOGAPS:

Navy Operational Global Atmospheric Prediction System

NRC:

National Research Council

NRL:

Naval Research Lab

OGA:

Office of Global Analysis

OMB:

Office of Management and Budget

OSTM:

Ocean Surface Topography Mission

POE:

Precise Orbit Ephemerides

RMS:

Root Mean Square

SARAL:

Satellite with ARgos and ALtika

SDR:

Sensor Data Record

SGT:

Stinger Ghaffarian Technologies company

SLR:

Satellite Laser Ranging

SSALT:

Solid-State ALTimeter

SWOT:

Surface Water and Ocean Topography

T/P:

TOPEX/Poseidon

TRMM:

Tropical Rainfall Measuring Mission

UMD:

University of Maryland

USAID:

United States Agency for International Development

USDA:

United States Department of Agriculture

USGS:

United States Geological Survey

WAOB:

World Agriculture Outlook Board

WAP:

World Agriculture Production

WASDE:

World Agriculture Supply and Demand Estimate

References

  • Alsdorf D, Rodriguez E, Lettenmaier DP (2007) Measuring surface water from space. Rev Geophys 45(2):RG2002. doi:10.1029/2006RG000197

  • Anulacion M (2003) Middle East and Turkey: warmer than normal and plenty of moisture. http://www.fas.usda.gov/pecad2/highlights/2003/12/me_turk_dec2003/index.htm

  • Beckley B, Zelensky N, Luthcke S, Callahan P (2004) Towards a seamless transition from TOPEX/Poseidon to Jason-1. Marine Geodesy Special Issue on Jason-1 Calibration/Validation Part III 27(3–4):373–389

    Google Scholar 

  • 10.1029/2007GL030002

    Article  Google Scholar 

  • Bilitza D, Koblinsky C, Beckley B, Zia S, Williamson R (1995) Using IRI for the computation of ionospheric corrections for altimeter data. Adv Space Res 15(2):113–120

    Article  Google Scholar 

  • Birkett CM (1995) The contribution of Topex/Poseidon to the global monitoring of climatically sensitive lakes. JGR-Oceans 100(C12): 25, 179–25, 204

    Google Scholar 

  • Birkett CM, Mason IM (1995) A new global lakes database for a remote sensing programme studying climatically sensitive large lakes. J Great Lakes Res 21(3):307–318

    Article  Google Scholar 

  • Birkett CM, Alsdorf D, Harding D (2004) River and water body – stage, width and gradient: satellite radar altimetry, interferometric SAR, and laser altimetry. In: Anderson MG (ed) The encyclopedia of hydrological sciences, vol 2. Hydrological application of remote sensing: surface states. Wiley, Chichester, UK. http://mrw.interscience.wiley.com/emrw/9780470848944/ehs/article/hsa065/current/abstract

  • Chambers DP, Ries JC, Urban TJ (2003) Calibration and verification of Jason-1 using global along-track residuals with TOPEX. Mar Geod 26:305–317

    Article  Google Scholar 

  • Cornford SL, Feather MS, Hicks KA (2001) DDP – A tool for life-cycle risk management. In: Proc IEEE aerospace conference, 10–17 March, vol 1, pp 441–451. http://ddptool.jpl.nasa.gov/docs/f344d-slc.pdf

  • Crétaux J-F, Birkett CM (2006) Lake studies from satellite radar altimetry. In: Observing the earth from space, Geosciences Comptes Rendus, French Academy of Sciences. doi:10.1016/j.crte.2006.08.002

    Google Scholar 

  • Fu L-L (ed) (2003) Wide-swath altimetric measurement of ocean surface topograph. JPL Publication 03-002. ftp://ftp-oceans.jpl.nasa.gov/pub/llf/WSOAreportFinal2.pdf

  • Fu L-L, Cazenave A (eds) (2001) Satellite altimetry and earth sciences: a handbook of techniques and applications. Inter Geophys Series Vol 69, Academic, San Diego, CA, ISBN 0122695453, 9780122695452

    Google Scholar 

  • Hutchinson C, Drake S, van Leeuwen W, Kaupp V, Haithcoat T (2003) Characterization of PECAD’s DSS: a zeroth-order assessment and benchmarking preparation. Report presented to NASA HQ, Washington, DC, and prepared by University of Arizona and University of Missouri.

    Google Scholar 

  • Koblinsky CJ, Ray RD, Beckley BD, Wang YM, Tsaoussi L, Brenner LC, Williamson RG (1998) NASA ocean altimeter pathfinder project report 1: Data processing handbook. NASA Technical Memorandum NASA/TM-1998-208605. http://sealevel-lit.jpl.nasa.gov/science/search-details.cfm?ID=897

  • Lemoine FG, Zelensky NP, Rowlands DD, Luthcke SB, Chinn DS, Marr GC (2001) Precise orbit determination for Geosat follow-on using satellite laser ranging data and intermission altimeter crossovers. In: Proc NASA/GSFC flight mechanics symposium NASA/CP-2001-209986, pp 377–391. http://ntrs.nasa.gov/index.jsp?method=order&oaiID=20010084987

  • Mangeni Bennie T (2006) The dwindling Lake Victoria water level. In: Proc IASTAD environmentally sound technology in water resources management, Gaborone, Botswana, Sept 11–13, No 515–803, pp 85–90. http://www.actapress.com/PaperInfo.aspx?PaperID=28258&reason=500

  • McKellip R, Beckley B, Birkett C. Blonski S, Doorn B, Grant B, Estep L, Moore R, Morris K, Ross K, Terrie G, Zanoni V (2004) PECAD’s global reservoir and lake monitor: a systems engineering report. Version 1.0, NASA/John C. Stennis Space Center, Mississippi

    Google Scholar 

  • Ménard Y, Fu LL, Escudier P, Parisot F, Perbos J, Vincent P, Desai S, Haines B, Kunstmann G (2003) The Jason-1 mission. Marine Geodesy, Special Issue on Jason-1 Calibration/Validation Part I 26(3–4):131–146

    Google Scholar 

  • Mertes LAK, Dekker AG, Brakenridge GR, Birkett CM, Létourneau G (2004) Rivers and lakes. In: Ustin SL, Rencz A (eds) Natural resources and environment manual of remote sensing, vol 5. Wiley, New York. http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471317934.html

  • Morel L, Willis P (2005) Terrestrial reference frame effects on global sea level rise determination from Topex/Poseidon altimetric data. Adv Space Res 36:358–368

    Article  Google Scholar 

  • Morris CS, Gill SK (1994) Variation of Great Lakes water levels derived from Geosat altimetry. Water Res Res 30(4):1009–1017

    Article  Google Scholar 

  • NRC (2007) Earth Science and applications from space: national imperatives for the next decade and beyond, committee on earth science and applications from space: a community assessment and strategy for the future. National Research Council, Executive Summary, ISBN: 0-309-10387-8. http://www.nap.edu/catalog.php?record_id=11820

  • Reynolds C (2005) Low water levels observed on Lake Victoria. USDA/FAS/OGA, http://www.fas.usda.gov/pecad/highlights/2005/09/uganda_26sep2005/.

  • Reynolds CA, Doorn B, Birkett CM, Beckley B (2007) Monitoring reservoir and lake water heights with satellite radar altimeters. Africa GIS 2007 Conference, Ouagadougou, Burkina Faso, Sept 17–21

    Google Scholar 

  • Resti A (1993) Envisat’s radar altimeter: RA-2. ESA Bull 76:58–60. http://www.esa.int/esapub/pi/bulletinPI.htm

  • Riebeck H (2006) Lake Victoria’s falling waters. NASA earth observatory. http://earthobservatory.nasa.gov/Study/Victoria/victoria.html

  • Ross K, McKellip R (2006) Verification and validation of NASA-supported enhacements to PECAD’s decision support tools. NASA/John C. Stennis Space Center, Mississipi. http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20060025997_2006169224.pdf

  • Scott RF, Baker SG, Birkett CM, Cudlip W, Laxon SW, Mansley JAD, Mantripp DR, Morley JG, Munro M, Palmer D, Ridley JK, Strawbridge F, Rapley CG, Wingham DJ (1992) An Investigation of the Tracking performance of the ERS-1 radar altimeter over non-ocean surfaces. UK-PAF report to ESA No. PF-RP-MSL-AL-0100, ESA Contract No 9575/91/HGE-I

    Google Scholar 

  • Scott RF, Baker SG, Birkett CM, Cudlip W, Laxon SW, Mantripp DR, Mansley JA, Morley JG, Rapley CG, Ridley JK, Strawbridge F, Wingham DJ (1994) A comparison of the performance of the ice and ocean tracking modes of the ERS-1 radar altimeter over non-ocean surfaces. Geophys Res Lett 21(7):553–556

    Article  Google Scholar 

  • Shum C, Yi Y, Cheng K, Kuo C, Braun A, Calmant S, Chambers D (2003) Calibration of Jason-1 altimeter over Lake Erie. Marine Geodesy, Special Issue on Jason-1 Calibration/Validation Part I 26(3–4):335–354

    Google Scholar 

  • Sutcliffe JV, Petersen G (2007) Lake Victoria: derivation of a corrected natural water level series, technical note. Hydrol Sci J 52(6):1316–1321

    Article  Google Scholar 

  • Swenson SC, Yeh PJ, Wahr J, Famiglietti J (2006) GRACE estimates of terrestrial water storage: validation and applications. Eos Trans AGU 87(52), Fall meet. Suppl., Abstract G13C-02http://65.216.151.13/meetings/fm06/fm06-sessions/fm06_G13C.html

  • UNEP (2006) Africa’s lakes: atlas of our changing environment. United Nations Environment Programme, pp 28–30. http://na.unep.net/AfricaLakes/

  • Vincent P, Desai SD, Dorandeu J, Ablain M, Soussi B, Callahan PS, Haines BJ (2003) Jason-1 geophysical performance evaluation. Marine Geodesy Special Issue on Jason-1 Calibration/Validation Part I 26(3–4):167–186

    Google Scholar 

  • Zanife OZ, Vincent P, Amarouche L, Dumont JP, Thibaut P, Labroue S (2003) Comparison of the Ku-Band range noise level and the relative sea-state bias of the Jason-1, TOPEX, and Poseidon-1 radar altimeters. Marine Geodesy, Special Issue on Jason-1 Calibration/Validation Part I 26(3–4):201–238

    Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the USDA/FAS/OGA and NASA grants NNS06AA15G, NNX08AM72G, NNX08AT88G and NASA/JPL sub-award 4–33637(UMD) for supporting this program. Acknowledgment also goes to NASA/PODAAC, CNES/AVISO, LEGOS, NOAA, ESA UK-PAF and ESA F-PAC, for provision of the T/P, Jason-1, Jason-2, GFO, ERS and Envisat satellite altimetric data sets.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Birkett .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Birkett, C., Reynolds, C., Beckley, B., Doorn, B. (2011). From Research to Operations: The USDA Global Reservoir and Lake Monitor. In: Vignudelli, S., Kostianoy, A., Cipollini, P., Benveniste, J. (eds) Coastal Altimetry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12796-0_2

Download citation

Publish with us

Policies and ethics