Object-Based Activity Recognition with Heterogeneous Sensors on Wrist | SpringerLink
Skip to main content

Object-Based Activity Recognition with Heterogeneous Sensors on Wrist

  • Conference paper
Pervasive Computing (Pervasive 2010)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 6030))

Included in the following conference series:

Abstract

This paper describes how we recognize activities of daily living (ADLs) with our designed sensor device, which is equipped with heterogeneous sensors such as a camera, a microphone, and an accelerometer and attached to a user’s wrist. Specifically, capturing a space around the user’s hand by employing the camera on the wrist mounted device enables us to recognize ADLs that involve the manual use of objects such as making tea or coffee and watering plant. Existing wearable sensor devices equipped only with a microphone and an accelerometer cannot recognize these ADLs without object embedded sensors. We also propose an ADL recognition method that takes privacy issues into account because the camera and microphone can capture aspects of a user’s private life. We confirmed experimentally that the incorporation of a camera could significantly improve the accuracy of ADL recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ahmad, F., Musilek, P.: A keystroke and pointer control input interface for wearable computers. In: Proc. PerCom 2006, pp. 2–11 (2006)

    Google Scholar 

  2. Bao, L., Intille, S.S.: Activity recognition from user-annotated acceleration data. In: Ferscha, A., Mattern, F. (eds.) PERVASIVE 2004. LNCS, vol. 3001, pp. 1–17. Springer, Heidelberg (2004)

    Google Scholar 

  3. Blum, M., Pentland, A.S., Troster, G.: Insense: Interest-based life logging. IEEE Multimedia 13(4), 40–48 (2006)

    Article  Google Scholar 

  4. Bouten, C.V., et al.: A triaxial accelerometer and portable data processing unit for the assessment of daily physical activity. IEEE Trans. on Bio-Medical Engineering 44(3), 136–147 (1997)

    Article  Google Scholar 

  5. Chen, J., Kam, A.H., Zhang, J., Liu, N., Shue, L.: Bathroom activity monitoring based on sound. In: Gellersen, H.-W., Want, R., Schmidt, A. (eds.) PERVASIVE 2005. LNCS, vol. 3468, pp. 47–61. Springer, Heidelberg (2005)

    Google Scholar 

  6. Clarkson, B., Mase, K., Pentland, A.: Recognizing user context via wearable sensors. In: Proc. ISWC 2000, pp. 69–75 (2000)

    Google Scholar 

  7. Comaniciu, D., Ramesh, V., Meer, P.: Kernel-based object tracking. IEEE Trans. on Pattern Analysis Machine Intelligence 25(5), 564–577 (2003)

    Article  Google Scholar 

  8. Cowling, M.: Non-speech environmental sound recognition system for autonomous surveillance. Ph.D. Thesis, Griffith University, Gold Coast Campus (2004)

    Google Scholar 

  9. Fitzpatrick, P., Kemp, C.C.: Shoes as a platform for vision. In: Proc. ISWC 2003, pp. 231–234 (2003)

    Google Scholar 

  10. Froehlich, J.E., Larson, E., Campbell, T., Haggerty, C., Fogarty, J., Patel, S.N.: HydroSense: Infrastructure-mediated single-point sensing of whole-home water activity. In: Proc. Ubicomp 2009, pp. 235–244 (2009)

    Google Scholar 

  11. Huynh, T., Schiele, B.: Towards less supervision in activity recognition from wearable sensors. In: Proc. ISWC 2006, pp. 3–10 (2006)

    Google Scholar 

  12. Intille, S.S., Tapia, E.M., Rondoni, J., Beaudin, J., Kukla, C., Agarwal, S., Bao, L., Larson, K.: Tools for studying behavior and technology in natural settings. In: Dey, A.K., Schmidt, A., McCarthy, J.F. (eds.) UbiComp 2003. LNCS, vol. 2864, pp. 157–174. Springer, Heidelberg (2003)

    Google Scholar 

  13. Jaakkola, T., Haussler, D.: Exploiting generative models in discriminative classifiers. In: Proc. Advances in Neural Information Processing Systems, vol. 11, pp. 487–493 (1999)

    Google Scholar 

  14. Kasteren, T.V., Noulas, A., Englebienne, G., Krose, B.: Accurate activity recognition in a home setting. In: Proc. UbiComp 2008, pp. 1–9 (2008)

    Google Scholar 

  15. Lester, J., Choudhury, T., Kern, N., Borriello, G., Hannaford, B.: A hybrid discriminative/generative approach for modeling human activities. In: Proc. IJCAI 2005, pp. 766–772 (2005)

    Google Scholar 

  16. Lester, J., Choudhury, T., Borriello, G.: A practical approach to recognizing physical activities. In: Fishkin, K.P., Schiele, B., Nixon, P., Quigley, A. (eds.) PERVASIVE 2006. LNCS, vol. 3968, pp. 1–16. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  17. Logan, B., Healey, J., Philipose, M., Tapia, E.M., Intille, S.S.: A long-term evaluation of sensing modalities for activity recognition. In: Krumm, J., Abowd, G.D., Seneviratne, A., Strang, T. (eds.) UbiComp 2007. LNCS, vol. 4717, pp. 483–500. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  18. Lowe, D.G.: Distinctive image features from scale–invariant keypoints. Int’l Journal on Computer Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  19. Lukowicz, P., Junker, H., et al.: WearNET: a distributed multi-sensor system for context aware wearables. In: Borriello, G., Holmquist, L.E. (eds.) UbiComp 2002. LNCS, vol. 2498, pp. 361–370. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  20. Lukowicz, P., Ward, J., Junker, H., Stager, M., Troster, G., Atrash, A., Starner, T.: Recognizing workshop activity using body worn microphones and accelerometers. In: Ferscha, A., Mattern, F. (eds.) PERVASIVE 2004. LNCS, vol. 3001, pp. 18–32. Springer, Heidelberg (2004)

    Google Scholar 

  21. Maekawa, T., Yanagisawa, Y., Kishino, Y., Kamei, K., Sakurai, Y., Okadome, T.: Object-blog system for environment-generated content. IEEE Pervasive Computing 7(4), 20–27 (2008)

    Article  Google Scholar 

  22. Mayol, W.W., Murray, D.W.: Wearable hand activity recognition for event summarization. In: Proc. ISWC 2005, pp. 122–129 (2005)

    Google Scholar 

  23. Mihailidis, A., Carmichael, B., Boger, J.: The use of computer vision in an intelligent environment to support aging-in-place, safety, and independence in the home. IEEE Trans. on Info. Tech. in BioMedicine 8(3), 238–247 (2004)

    Article  Google Scholar 

  24. Morikawa, S., Ito, K., Shibata, T.: A k-means VLSI processor and its application to autonomous area segmentation in images. IEIC Technical Report 106(342), 19–24 (2006)

    Google Scholar 

  25. Philipose, M., Fishkin, K.P., Perkowitz, M.: Inferring activities from interactions with objects. IEEE Pervasive Computing 3(4), 50–57 (2004)

    Article  Google Scholar 

  26. Raina, R., Shen, Y., Ng, A.Y., McCallum, A.: Classification with hybrid generative/discriminative models. In: Proc. Advances in Neural Information Processing Systems, vol. 16 (2003)

    Google Scholar 

  27. Schiele, B., James, L.C.: Object recognition using multidimensional receptive field histograms. In: Proc. European Conference on Computer Vision, pp. 610–619 (1996)

    Google Scholar 

  28. Shi, Y., Huang, Y., Minnen, D., Bobick, A., Essa, I.: Propagation networks for recognition of partially ordered sequential action. In: Proc. CVPR 2004, vol. 2, pp. 862–869 (2004)

    Google Scholar 

  29. Starner, T., Schiele, B., Pentland, A.: Visual contextual awareness in wearable computing. In: Proc. ISWC 1998, pp. 50–57 (1998)

    Google Scholar 

  30. Swain, M.J., Ballard, D.H.: Color indexing. Int’l Journal of Computer Vision 7, 11–32 (1991)

    Article  Google Scholar 

  31. Tapia, E.M., Intille, S.S., Larson, K.: Activity recognition in the home using simple and ubiquitous sensors. In: Ferscha, A., Mattern, F. (eds.) PERVASIVE 2004. LNCS, vol. 3001, pp. 158–175. Springer, Heidelberg (2004)

    Google Scholar 

  32. Tapia, E.M., Intille, S.S., Larson, K.: Portable wireless sensors for object usage sensing in the home: challenges and practicalities. In: Schiele, B., Dey, A.K., Gellersen, H., de Ruyter, B., Tscheligi, M., Wichert, R., Aarts, E., Buchmann, A. (eds.) AmI 2007. LNCS, vol. 4794, pp. 19–37. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  33. Welk, G., Differding, J.: The utility of the Digi-Walker step counter to assess daily physical activity patterns. Medicine & Science in Sports & Exercise 32(9), S481–S488 (2000)

    Article  Google Scholar 

  34. Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and techniques, 2nd edn. Morgan Kaufmann, San Francisco (2005)

    MATH  Google Scholar 

  35. Wu, J., Osuntogun, A., et al.: A scalable approach to activity recognition based on object use. In: Proc. ICCV 2007, pp. 1–8 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Maekawa, T. et al. (2010). Object-Based Activity Recognition with Heterogeneous Sensors on Wrist. In: Floréen, P., Krüger, A., Spasojevic, M. (eds) Pervasive Computing. Pervasive 2010. Lecture Notes in Computer Science, vol 6030. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12654-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12654-3_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12653-6

  • Online ISBN: 978-3-642-12654-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics