3D Cell Pattern Generation in Artificial Development | SpringerLink
Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 284))

Abstract

Cell pattern formation has an important role in both artificial and natural development. This paper presents an artificial development model for 3D cell pattern generation based on the cellular automata paradigm. Cell replication is controlled by a genome consisting of an artificial regulatory network and a series of structural genes. The genome was evolved by a genetic algorithm in order to generate 3D cell patterns through the selective activation and inhibition of genes.Morphogenetic gradients were used to provide cells with positional information that constrained cellular replication in space. The model was applied to the problem of growing a solid French flag pattern in a 3D virtual space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baker, R.W., Herman, G.T.: Celia - a cellular linear iterative array simulator. In: Proceedings of the fourth annual conference on Applications of simulation. Winter Simulation Conference, pp. 64–73 (1970)

    Google Scholar 

  2. Banzhaf, W.: Artificial regulatory networks and genetic programming. In: Riolo, R.L., Worzel, B. (eds.) Genetic Programming Theory and Practice, ch. 4, pp. 43–62. Kluwer, Dordrecht (2003)

    Google Scholar 

  3. Beurier, G., Michel, F., Ferber, J.: A morphogenesis model for multiagent embryogeny. In: Rocha, L.M., Yaeger, L.S., Bedau, M.A., Floreano, D., Goldstone, R.L., Vespignani, A. (eds.) Proceedings of the Tenth International Conference on the Simulation and Synthesis of Living Systems (ALife X), pp. 84–90 (2006)

    Google Scholar 

  4. Bowers, C.: Simulating evolution with a computational model of embryogeny: Obtaining robustness from evolved individuals. In: Capcarrère, M.S., Freitas, A.A., Bentley, P.J., Johnson, C.G., Timmis, J. (eds.) ECAL 2005. LNCS (LNAI), vol. 3630, pp. 149–158. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  5. Carroll, S.B., Grenier, J.K., Weatherbee, S.D.: From DNA to Diversity: Molecular Genetics and the Evolution of Animal Design, 2nd edn. Blackwell Science, Malden (2004)

    Google Scholar 

  6. Chavoya, A.: Cell pattern generation in artificial development. In: Rossi, C. (ed.) Brain, Vision and AI, In-Teh, Croatia, ch. 4, pp. 73–94 (2008)

    Google Scholar 

  7. Chavoya, A.: Artificial development. In: Foundations of Computational Intelligence. Volume 1: Learning and Approximation (Studies in Computational Intelligence), vol. 8, pp. 185–215. Springer, Heidelberg (2009)

    Google Scholar 

  8. Chavoya, A., Duthen, Y.: Using a genetic algorithm to evolve cellular automata for 2D/3D computational development. In: GECCO 2006: Proceedings of the 8th annual conference on Genetic and evolutionary computation, pp. 231–232. ACM Press, New York (2006)

    Chapter  Google Scholar 

  9. Chavoya, A., Duthen, Y.: An artificial development model for cell pattern generation. In: Randall, M., Abbass, H.A., Wiles, J. (eds.) ACAL 2007. LNCS (LNAI), vol. 4828, pp. 61–71. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  10. Chavoya, A., Duthen, Y.: Use of a genetic algorithm to evolve an extended artificial regulatory network for cell pattern generation. In: GECCO 2007: Proceedings of the 9th annual conference on Genetic and evolutionary computation, p. 1062. ACM Press, New York (2007)

    Chapter  Google Scholar 

  11. Chavoya, A., Duthen, Y.: A cell pattern generation model based on an extended artificial regulatory network. BioSystems 94(1), 95–101 (2008)

    Article  Google Scholar 

  12. Cickovski, T., Aras, K., Swat, M., Merks, R.M.H., Glimm, T., Hentschel, H.G.E., Alber, M.S., Glazier, J.A., Newman, S.A., Izaguirre, J.A.: From genes to organisms via the cell: A problem-solving environment for multicellular development. Computing in Science and Eng. 9(4), 50–60 (2007)

    Article  Google Scholar 

  13. Davidson, E.H.: The Regulatory Genome: Gene Regulatory Networks in Development And Evolution, 1st edn. Academic Press, London (2006)

    Google Scholar 

  14. Devert, A., Bredeche, N., Schoenauer, M.: Robust multi-cellular developmental design. In: GECCO 2007: Proceedings of the 9th annual conference on Genetic and evolutionary computation, pp. 982–989. ACM, New York (2007)

    Chapter  Google Scholar 

  15. Eggenberger, P.: Evolving morphologies of simulated 3D organisms based on differential gene expression. In: Harvey, I., Husbands, P. (eds.) Proceedings of the 4th European Conference on Artificial Life, pp. 205–213. Springer, Heidelberg (1997)

    Google Scholar 

  16. Gordon, T.G.W., Bentley, P.J.: Bias and scalability in evolutionary development. In: GECCO 2005: Proceedings of the 2005 conference on Genetic and evolutionary computation, pp. 83–90. ACM, New York (2005)

    Chapter  Google Scholar 

  17. Harding, S.L., Miller, J.F., Banzhaf, W.: Self-modifying cartesian genetic programming. In: GECCO 2007: Proceedings of the 9th annual conference on Genetic and evolutionary computation, pp. 1021–1028. ACM, New York (2007)

    Chapter  Google Scholar 

  18. Herman, G.T., Liu, W.H.: The daughter of Celia, the French flag and the firing squad. In: WSC 1973: Proceedings of the 6th conference on Winter simulation, p. 870. ACM, New York (1973)

    Chapter  Google Scholar 

  19. Joachimczak, M., Wróbel, B.: Evo-devo in silico: a model of a gene network regulating multicellular development in 3D space with artificial physics. In: Bullock, S., Noble, J., Watson, R., Bedau, M.A. (eds.) Artificial Life XI: Proceedings of the Eleventh International Conference on the Simulation and Synthesis of Living Systems, pp. 297–304. MIT Press, Cambridge (2008)

    Google Scholar 

  20. Knabe, J.F., Nehaniv, C.L., Schilstra, M.J.: Evolution and morphogenesis of differentiated multicellular organisms: autonomously generated diffusion gradients for positional information. In: Artificial Life XI: Proceedings of the Eleventh International Conference on the Simulation and Synthesis of Living Systems, pp. 321–328. MIT Press, Cambridge (2008)

    Google Scholar 

  21. Kumar, S., Bentley, P.J.: On Growth, Form and Computers. Academic Press, London (2003)

    Google Scholar 

  22. Lindenmayer, A.: Mathematical models for cellular interaction in development, Parts I and II. Journal of Theoretical Biology 18, 280–315 (1968)

    Article  Google Scholar 

  23. Lindenmayer, A., Rozenberg, G.: Developmental systems and languages. In: STOC 1972: Proceedings of the fourth annual ACM symposium on Theory of computing, pp. 214–221. ACM, New York (1972)

    Chapter  Google Scholar 

  24. Meinhardt, H.: Models of Biological Pattern Formation. Academic Press, London (1982)

    Google Scholar 

  25. Miller, J.F., Banzhaf, W.: Evolving the program for a cell: from French flags to Boolean circuits. In: Kumar, S., Bentley, P.J. (eds.) On Growth, Form and Computers, pp. 278–301. Academic Press, London (2003)

    Chapter  Google Scholar 

  26. Reil, T.: Dynamics of gene expression in an artificial genome - implications for biological and artificial ontogeny. In: Floreano, D., Mondada, F. (eds.) ECAL 1999. LNCS, vol. 1674, pp. 457–466. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  27. Turing, A.M.: The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 237(641), 37–72 (1952)

    Article  Google Scholar 

  28. Tyrrell, A.M., Greensted, A.J.: Evolving dependability. J. Emerg. Technol. Comput. Syst. 3(2), 7 (2007)

    Article  Google Scholar 

  29. Wolfram, S.: Statistical mechanics of cellular automata. Reviews of Modern Physics 55, 601–644 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  30. Wolpert, L.: The French flag problem: a contribution to the discussion on pattern development and regulation. In: Waddington, C. (ed.) Towards a Theoretical Biology, pp. 125–133. Edinburgh University Press, New York (1968)

    Google Scholar 

  31. Wu, P., Wu, X., Wainer, G.A.: Applying cell-devs in 3D free-form shape modeling. In: Sloot, P.M.A., Chopard, B., Hoekstra, A.G. (eds.) ACRI 2004. LNCS, vol. 3305, pp. 81–90. Springer, Heidelberg (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chavoya, A., Andalon-Garcia, I.R., Lopez-Martin, C., Meda-Campaña, M.E. (2010). 3D Cell Pattern Generation in Artificial Development. In: González, J.R., Pelta, D.A., Cruz, C., Terrazas, G., Krasnogor, N. (eds) Nature Inspired Cooperative Strategies for Optimization (NICSO 2010). Studies in Computational Intelligence, vol 284. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12538-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12538-6_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12537-9

  • Online ISBN: 978-3-642-12538-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics