Abstract
In this paper, we complement the term frequency, which is used in many bag-of-words based information retrieval models, with information about the semantic relatedness of query and document terms. Our experiments show that when employed in the standard probabilistic retrieval model BM25, the additional semantic information significantly outperforms the standard term frequency, and also improves the effectiveness when additional query expansion is applied. We further analyze the impact of different lexical semantic resources on the IR effectiveness.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Tao, T., Wang, X., Mei, Q., Zhai, C.: Language Model Information Retrieval with Document Expansion. In: Proc. of HLT-NAACL 2006 (2006)
Yi, X., Allan, J.: A Comparative Study of Utilizing Topic Models for Information Retrieval. In: Proc. of ECIR 2009 (2009)
Sparck Jones, K., Walker, S., Robertson, S.E.: A probabilistic model of information retrieval: development and comparative experiments. Information Processing and Management 36(6) (2000)
Gabrilovich, E., Markovitch, S.: Computing Semantic Relatedness using Wikipedia-based Explicit Semantic Analysis. In: Proc. of IJCAI 2007 (2007)
Egozi, O., Gabrilovich, E., Markovitch, S.: Concept-Based Feature Generation and Selection for Information Retrieval. In: Proc. of AAAI 2008 (2008)
Müller, C., Gurevych, I.: Using Wikipedia and Wiktionary in Domain-Specific Information Retrieval. In: Peters, C., Deselaers, T., Ferro, N., Gonzalo, J., Jones, G.J.F., Kurimo, M., Mandl, T., Peñas, A., Petras, V. (eds.) Evaluating Systems for Multilingual and Multimodal Information Access. LNCS, vol. 5706, pp. 219–226. Springer, Heidelberg (2009)
Zesch, T., Müller, C., Gurevych, I.: Using Wiktionary for Computing Semantic Relatedness. In: Proc. of AAAI 2008 (2008)
Amati, G.: Probability Models for Information Retrieval based on Divergence from Randomness. PhD thesis, Dept. of Computing Science, Univ. of Glasgow (2003)
Anderka, M., Stein, B.: The ESA Retrieval Model Revisited. In: Proc. of SIGIR 2009 (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Müller, C., Gurevych, I. (2010). Semantically Enhanced Term Frequency. In: Gurrin, C., et al. Advances in Information Retrieval. ECIR 2010. Lecture Notes in Computer Science, vol 5993. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12275-0_56
Download citation
DOI: https://doi.org/10.1007/978-3-642-12275-0_56
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-12274-3
Online ISBN: 978-3-642-12275-0
eBook Packages: Computer ScienceComputer Science (R0)