Some Observations on Holographic Algorithms | SpringerLink
Skip to main content

Some Observations on Holographic Algorithms

  • Conference paper
LATIN 2010: Theoretical Informatics (LATIN 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6034))

Included in the following conference series:

Abstract

We define the notion of diversity for families of finite functions, and express the limitations of a simple class of holographic algorithms in terms of limitations on diversity. We go on to describe polynomial time holographic algorithms for computing the parity of the following quantities for degree three planar undirected graphs: the number of 3-colorings up to permutation of colors, the number of connected vertex covers, and the number of induced forests or feedback vertex sets. In each case the parity can be computed for any slice of the problem, in particular for colorings where the first color is used a certain number of times, or where the connected vertex cover, feedback set or induced forest has a certain number of nodes. These holographic algorithms use bases of three components, rather than two.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Barbanchon, R.: Reductions fines entre problèmes NP-complets, PhD Thesis, Université de Caen Basse-Normandie (2003)

    Google Scholar 

  2. Barbanchon, R.: On unique graph 3-colorability and parsimonious reductions in the plane. Theoretical Computer Science 319(1-3), 455–482 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bubley, R., Dyer, M., Greenhill, C., Jerrum, M.: On approximately counting colourings of small degree graphs. SIAM J. Comput. 29, 387–400 (1999)

    Article  MathSciNet  Google Scholar 

  4. Cai, J.-Y., Choudhary, V.: Some Results on Matchgates and Holographic Algorithms. International Journal of Software and Informatics 1(1), 3–36 (2007)

    MathSciNet  Google Scholar 

  5. Cai, J.-Y., Choudhary, V., Lu, P.: On the Theory of Matchgate Computations. Theory of Computing Systems 45(1), 108–132 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cai, J.-Y., Lu, P.: Holographic algorithms: from art to science. In: STOC 2007, pp. 401–410 (2007)

    Google Scholar 

  7. Cai, J.-Y., Lu, P.: Holographic algorithms: The power of dimensionality resolved. Theor. Comput. Sci. 410(18), 1618–1628 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cai, J.-Y., Lu, P., Xia, M.: Holographic Algorithms by Fibonacci Gates and Holographic Reductions for Hardness. In: FOCS, pp. 644–653 (2008)

    Google Scholar 

  9. Cook, S.A.: The complexity of theorem proving procedures. In: Proceedings of the 3rd ACM STOC, pp. 151–158 (1971)

    Google Scholar 

  10. Escoffier, B., Gourves, L., Monnot, J.: Complexity and approximation results for the connected vertex cover problem in graphs and hypergraphs. Journal of Discrete Algorithms (2009)

    Google Scholar 

  11. Fernau, H., Manlove, D.: Vertex and edge covers with clustering properties: Complexity and algorithms. Journal of Discrete Algorithms (2009)

    Google Scholar 

  12. Garey, M.R., Johnson, D.S.: The rectilinear steiner tree problem is NP complete. SIAM Journal of Applied Mathematics 32, 826–834 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  13. Garey, M.R., Johnson, D.S.: Computer and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman, New York (1979)

    Google Scholar 

  14. Hunt III, H.B., Marathe, M.V., Radhakrishnan, V., Stearns, R.E.: The Complexity of Planar Counting Problems. SIAM J. Comput. 27(4), 1142–1167 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  15. Jerrum, M.R.: Two-dimensional monomer-dimer systems are computationally intractable. J. Statist. Phys. 48(1-2), 121–134 (1987)

    Article  MathSciNet  Google Scholar 

  16. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W. (eds.) Complexity of Computer Computations, pp. 85–104. Plenum Press, New York (1972)

    Google Scholar 

  17. Ladner, R.E.: The Circuit Value Problem is Log Space Complete for P. SIGACT NEWS 7(1), 18–20 (1975)

    Article  MathSciNet  Google Scholar 

  18. Li, D.M., Liu, Y.P.: A polynomial algorithm for finding the minimum feedback vertex set of a 3-regular simple graph. Acta Math. Sci. 19(4), 375–381 (1999)

    MATH  MathSciNet  Google Scholar 

  19. Lichtenstein, D.: Planar formulae and their uses. SIAM J. Comput. 11, 329–343 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  20. Lupanov, O.B.: A method of circuit synthesis. Izv. VUZ Radiofiz 1, 120–140 (1958)

    Google Scholar 

  21. Neciporuk, E.I.: A Boolean Function. Sov. Math. Dokl. 7, 999–1000 (1966)

    Google Scholar 

  22. Speckenmeyer, E.: Untersuchungen zum Feedback Vertex Set Problem in ungerichteten Graphen. PhD Thesis, Universität Paderborn (1983)

    Google Scholar 

  23. Speckenmeyer, E.: On feedback vertex sets and nonseparating independent sets in cubic graphs. Journal of Graph Theory 12(3), 405–412 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  24. Ueno, S., Kajitani, Y., Gotoh, S.: On the nonseparating independent set problem and feedback set problem for graphs with no vertex degree exceeding three. Discrete Mathematics 72, 355–360 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  25. Valiant, L.G.: The complexity of computing the permanent. Theoretical Computer Science 8, 189–201 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  26. Valiant, L.G.: The complexity of enumeration and reliability problems. SIAM J. Computing 8(3), 410–421 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  27. Valiant, L.G.: Holographic algorithms (extended abstract). In: Proc. 45th Annual IEEE Symposium on Foundations of Computer Science, October 17-19, pp. 306–315. IEEE Press, Los Alamitos (2004)

    Chapter  Google Scholar 

  28. Valiant, L.G.: Completeness for parity problems. In: Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595, pp. 1–9. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  29. Valiant, L.G.: Accidental algorithms. In: Proc. 47th Annual IEEE Symposium on Foundations of Computer Science, October 22-24, pp. 509–517. IEEE Press, Los Alamitos (2006)

    Google Scholar 

  30. Valiant, L.G.: Holographic algorithms. SIAM J. on Computing 37(5), 1565–1594 (2008); Earlier version: Electronic Colloquium on Computational Complexity, Report TR05-099 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  31. Xia, M., Zhang, P., Zhao, W.: Computational complexity of counting problems on 3-regular planar graphs. Theor. Comput. Sci. 384(1), 111–125 (2007)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Valiant, L.G. (2010). Some Observations on Holographic Algorithms. In: López-Ortiz, A. (eds) LATIN 2010: Theoretical Informatics. LATIN 2010. Lecture Notes in Computer Science, vol 6034. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12200-2_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12200-2_50

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12199-9

  • Online ISBN: 978-3-642-12200-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics