Connectivity Is Not a Limit for Kernelization: Planar Connected Dominating Set | SpringerLink
Skip to main content

Connectivity Is Not a Limit for Kernelization: Planar Connected Dominating Set

  • Conference paper
LATIN 2010: Theoretical Informatics (LATIN 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6034))

Included in the following conference series:

Abstract

We prove a small linear-size kernel for the connected dominating set problem in planar graphs through data reduction. Our set of rules efficiently reduce a planar graph G with n vertices and connected dominating number γ c (G) to a kernel of size at most 413γ c (G) in O(n 3) time answering the question of whether the connectivity criteria hinders the construction of small kernels, negatively (in case of the planar connected dominating set). Our result gives a fixed-parameter algorithm of time \((2^{O(\sqrt{\gamma_c(G)})}\cdot \gamma_c(G) + n^3)\) using the standard branch-decomposition based approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alber, J., Fellows, M.R., Niedermeier, R.: Polynomial-time data reduction for dominating set. Journal of the ACM 51(3), 363–384 (2004) (electronic)

    Article  MathSciNet  Google Scholar 

  2. Bansal, N., Blum, A., Chawla, S.: Correlation clustering, p. 238. IEEE Computer Society, Los Alamitos (2002)

    Google Scholar 

  3. Blum, J., Ding, M., Thaeler, A., Cheng, X.: Connected dominating set in sensor networks and MANETs. In: Handbook of combinatorial optimization, vol. B (Suppl.), pp. 329–369. Springer, New York (2005)

    Chapter  Google Scholar 

  4. Bodlaender, H.L., Fomin, F.V., Lokshtanov, D., Penninkx, E., Saurabh, S., Thilikos, D.M.: (Meta) Kernelization, April 4 (2009), http://arxiv.org/abs/0904.0727

  5. Buss, J.F., Goldsmith, J.: Nondeterminism within P. SIAM Journal on Computing 22(3), 560–572 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cai, L., Chen, J., Downey, R.G., Fellows, M.R.: Advice classes of parameterized tractability. Annals of Pure and Applied Logic 84(1), 119–138 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chen, J., Fernau, H., Kanj, I.A., Xia, G.: Parametric duality and kernelization: Lower bounds and upper bounds on kernel size. SIAM Journal on Computing 37(4), 1077–1106 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chen, J., Kanj, I.: Improved exact algorithms for MAX-SAT. In: Rajsbaum, S. (ed.) LATIN 2002. LNCS, vol. 2286, pp. 341–355. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  9. Dorn, F.: Dynamic programming and fast matrix multiplication. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 280–291. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  10. Dorn, F., Penninkx, E., Bodlaender, H.L., Fomin, F.V.: Efficient exact algorithms on planar graphs: Exploiting sphere cut branch decompositions. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 95–106. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  11. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Computer Science. Springer, New York (1999)

    Google Scholar 

  12. Gu, Q., Imani, N.: Small Kernel for Planar Connected Sominating Set. TR 2009-12, School of Computing Science, Simon Fraser University, Burnaby, BC, Canada (June 2009), ftp://fas.sfu.ca/pub/cs/TR/2009/CMPT2009-12.pdf

  13. Guo, J., Niedermeier, R.: Linear Problem Kernels for NP-Hard Problems on Planar Graphs. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 375–386. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  14. Gramm, J., Hirsch, E.A., Niedermeier, R., Rossmanith, P.: Worst-case upper bounds for MAX-2-SAT with an application to MAX-CUT. Discrete Applied Mathematics 130(2), 139–155 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  15. Gramm, J., Nierhoff, T., Sharan, R., Tantau, T.: Haplotyping with missing data via perfect path phylogenies. Discrete Applied Mathematics 155(6-7), 788–805 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  16. Guo, J., Niedermeier, R.: Fixed-parameter tractability and data reduction for multicut in trees. Networks 46(3), 124–135 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  17. Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Fundamentals of Domination in Graphs. Monographs and Textbooks in Pure and Applied Mathematics, vol. 208. Marcel Dekker, New York (1998)

    MATH  Google Scholar 

  18. Imani, N.: Data Reduction for Connected Dominating Set. Master Thesis, Simon Fraser University, BC, Canada (August 2008)

    Google Scholar 

  19. Lokshtanov, D., Mnich, M., Saurabh, S.: Linear kernel for planar connected dominating set. To appear in Proceedings of TAMC (May 2009)

    Google Scholar 

  20. Mahajan, M., Raman, V.: Parameterizing above guaranteed values: MaxSat and MaxCut. Journal of Algorithms 31(2), 335–354 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  21. Nemhauser, G.L., Trotter Jr., L.E.: Vertex packings: structural properties and algorithms. Mathematical Programming 8, 232–248 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  22. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series in Mathematics and its Applications, vol. 31. Oxford University Press, Oxford (2006)

    MATH  Google Scholar 

  23. Weihe, K.: Covering trains by stations or the power of data reduction. In: Proceedings of Algorithms and Experiments, ALEX, pp. 1–8 (1998)

    Google Scholar 

  24. Weihe, K.: On the differences between “practical” and “applied”. In: Näher, S., Wagner, D. (eds.) WAE 2000. LNCS, vol. 1982, pp. 1–10. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gu, Q., Imani, N. (2010). Connectivity Is Not a Limit for Kernelization: Planar Connected Dominating Set. In: López-Ortiz, A. (eds) LATIN 2010: Theoretical Informatics. LATIN 2010. Lecture Notes in Computer Science, vol 6034. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12200-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12200-2_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12199-9

  • Online ISBN: 978-3-642-12200-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics