Abstract
In this paper, we consider the problem of representing graphs by polygons whose sides touch. We show that at least six sides per polygon are necessary by constructing a class of planar graphs that cannot be represented by pentagons. We also show that the lower bound of six sides is matched by an upper bound of six sides with a linear time algorithm for representing any planar graph by touching hexagons. Moreover, our algorithm produces convex polygons with edges with slopes 0, 1, -1.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Battista, G.D., Lenhart, W., Liotta, G.: Proximity drawability: A survey. In: Tamassia, R., Tollis, I.G. (eds.) GD 1994. LNCS, vol. 894, pp. 328–339. Springer, Heidelberg (1995)
Biedl, T., Bretscher, A., Meijer, H.: Rectangle of influence drawings of graphs without filled 3-cycles. In: Kratochvíl, J. (ed.) GD 1999. LNCS, vol. 1731, pp. 359–368. Springer, Heidelberg (1999)
Bruls, M., Huizing, K., van Wijk, J.J.: Squarified treemaps. In: Proc. Joint Eurographics/IEEE TVCG Symp. Visualization, VisSym., pp. 33–42 (2000)
Buchsbaum, A.L., Gansner, E.R., Procopiuc, C.M., Venkatasubramanian, S.: Rectangular layouts and contact graphs. ACM Transactions on Algorithms 4(1) (2008)
Chrobak, M., Payne, T.: A linear-time algorithm for drawing planar graphs. Inform. Process. Lett. 54, 241–246 (1995)
de Berg, M., Mumford, E., Speckmann, B.: On rectilinear duals for vertex-weighted plane graphs. Discrete Mathematics 309(7), 1794–1812 (2009)
de Fraysseix, H., de Mendez, P.O., Rosenstiehl, P.: On triangle contact graphs. Combinatorics, Probability and Computing 3, 233–246 (1994)
de Fraysseix, H., Pach, J., Pollack, R.: Small sets supporting Fary embeddings of planar graphs. In: Procs. 20th Symposium on Theory of Computing (STOC), pp. 426–433 (1988)
de Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid. Combinatorica 10(1), 41–51 (1990)
Gabriel, K.R., Sokal, R.R.: A new statistical approach to geographical analysis. Systematic Zoology 18, 54–64 (1969)
He, X.: On finding the rectangular duals of planar triangular graphs. SIAM Journal of Computing 22(6), 1218–1226 (1993)
He, X.: On floor-plan of plane graphs. SIAM Journal of Computing 28(6), 2150–2167 (1999)
Hliněný, P.: Classes and recognition of curve contact graphs. Journal of Comb. Theory (B) 74(1), 87–103 (1998)
Hliněný, P., Kratochvíl, J.: Representing graphs by disks and balls (a survey of recognition-complexity results). Discrete Mathematics 229(1-3), 101–124 (2001)
Hopcroft, J., Tarjan, R.E.: Efficient planarity testing. Journal of the ACM 21(4), 549–568 (1974)
Jaromczyk, J.W., Toussaint, G.T.: Relative neighborhood graphs and their relatives. Proceedings of the IEEE 80, 1502–1517 (1992)
Kant, G.: Hexagonal grid drawings. In: Mayr, E.W. (ed.) WG 1992. LNCS, vol. 657, pp. 263–276. Springer, Heidelberg (1993)
Kant, G.: Drawing planar graphs using the canonical ordering. Algorithmica 16, 4–32 (1996) (special issue on Graph Drawing, edited by G. Di Battista and R. Tamassia)
Kant, G., He, X.: Regular edge labeling of 4-connected plane graphs and its applications in graph drawing problems. Theoretical Computer Science 172, 175–193 (1997)
Koebe, P.: Kontaktprobleme der konformen Abbildung. Berichte über die Verhandlungen der Sächsischen Akademie der Wissenschaften zu Leipzig. Math.-Phys. Klasse 88,141–164 (1936)
Koźmiński, K., Kinnen, W.: Rectangular dualization and rectangular dissections. IEEE Transactions on Circuits and Systems 35(11), 1401–1416 (1988)
Lai, Y.-T., Leinwand, S.M.: Algorithms for floorplan design via rectangular dualization. IEEE Transactions on Computer-Aided Design 7, 1278–1289 (1988)
Lai, Y.-T., Leinwand, S.M.: A theory of rectangular dual graphs. Algorithmica 5, 467–483 (1990)
Liao, C.-C., Lu, H.-I., Yen, H.-C.: Compact floor-planning via orderly spanning trees. Journal of Algorithms 48, 441–451 (2003)
Liotta, G., Lubiw, A., Meijer, H., Whitesides, S.H.: The rectangle of influence drawability problem. Computational Geometry: Theory and Applications 10, 1–22 (1998)
Rahman, M., Nishizeki, T., Ghosh, S.: Rectangular drawings of planar graphs. Journal of Algorithms 50(1), 62–78 (2004)
Read, R.C.: A new method for drawing a graph given the cyclic order of the edges at each vertex. Congressus Numerantium 56, 31–44 (1987)
Steadman, P.: Graph-theoretic representation of architectural arrangement. In: March, L. (ed.) The Architecture of Form, pp. 94–115. Cambridge University Press, Cambridge (1976)
Thomassen, C.: Plane representations of graphs. In: Bondy, J.A., Murty, U.S.R. (eds.) Progress in Graph Theory, pp. 43–69 (1982)
Thomassen, C.: Interval representations of planar graphs. Journal of Comb. Theory (B) 40, 9–20 (1988)
Yeap, G.K., Sarrafzadeh, M.: Sliceable floorplanning by graph dualization. SIAM Journal on Discrete Mathematics 8(2), 258–280 (1995)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Gansner, E.R., Hu, Y.F., Kaufmann, M., Kobourov, S.G. (2010). Optimal Polygonal Representation of Planar Graphs. In: López-Ortiz, A. (eds) LATIN 2010: Theoretical Informatics. LATIN 2010. Lecture Notes in Computer Science, vol 6034. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12200-2_37
Download citation
DOI: https://doi.org/10.1007/978-3-642-12200-2_37
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-12199-9
Online ISBN: 978-3-642-12200-2
eBook Packages: Computer ScienceComputer Science (R0)