Ambiguity and Deficiency in Costas Arrays and APN Permutations | SpringerLink
Skip to main content

Ambiguity and Deficiency in Costas Arrays and APN Permutations

  • Conference paper
LATIN 2010: Theoretical Informatics (LATIN 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6034))

Included in the following conference series:

Abstract

We introduce the concepts of weighted ambiguity and deficiency for a mapping between two finite Abelian groups of the same size. Then we study the optimum lower bounds of these measures for a permutation of ℤ n and give a construction of permutations meeting the lower bound by modifying some permutation polynomials over finite fields. These permutations are also APN permutations.

The authors are partially supported by NSERC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Colbourn, C.J., Dinitz, J.H. (eds.): Handbook of Combinatorial Designs, 2nd edn. Discrete Mathematics and its Applications. Chapman & Hall/CRC, Boca Raton (2007)

    MATH  Google Scholar 

  2. Costas, J.P.: A study of a class of detection waveforms having nearly ideal range-doppler ambiguity properties. Proceedings of IEEE 72, 996–1009 (1984)

    Article  Google Scholar 

  3. Drakakis, K.: A review of Costas arrays. J. Appl. Math., Art. ID 26385, 32 (2006)

    Google Scholar 

  4. Drakakis, K., Gow, R., McGuire, G.: APN permutations on ℤ n and Costas arrays. Discrete Applied Mathematics 157(15), 3320–3326 (2009)

    Article  MathSciNet  Google Scholar 

  5. Lidl, R., Mullen, G.L.: Unsolved problems: when does a polynomial over a finite field permute the elements of the field? Amer. Math. Monthly 95(3), 243–246 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  6. Lidl, R., Mullen, G.L.: Unsolved problems: when does a polynomial over a finite field permute the elements of the field? II. Amer. Math. Monthly 100(1), 71–74 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  7. Lidl, R., Niederreiter, H.: Finite Fields, 2nd edn. Encyclopedia of Mathematics and its Applications, vol. 20. Cambridge University Press, Cambridge (1997); With a foreword by P. M. Cohn

    Google Scholar 

  8. Massey, J.: SAFER K 64: A byte-oriented block-ciphering algorithm. Fast Software Encryption, 1–17 (1993)

    Google Scholar 

  9. Mullen, G.L.: Permutation polynomials over finite fields. In: Finite fields, coding theory, and advances in communications and computing. LNPAM, vol. 141, pp. 131–151. Dekker, New York (1993)

    Google Scholar 

  10. Mullen, G.L., Stevens, H.: Polynomial functions (mod m). Acta Mathematica, Hungarica 44(3-4), 237–241 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  11. Nyberg, K.: Differentially uniform mappings for cryptography. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 55–64. Springer, Heidelberg (1994)

    Google Scholar 

  12. Rivest, R.L.: Permutation polynomials modulo 2w. Finite Fields and their Applications 7, 287–292 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  13. Shearer, J.B.: Difference triangle sets. In: Colbourn, C.J., Dinitz, J. (eds.) [1], ch. VI.19, pp. 436–440

    Google Scholar 

  14. Sun, J., Takeshita, O.Y.: Interleavers for Turbo codes using permutation polynomials over integer rings. IEEE Trans. Inform. Theory 51(1), 101–119 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Panario, D., Stevens, B., Wang, Q. (2010). Ambiguity and Deficiency in Costas Arrays and APN Permutations. In: López-Ortiz, A. (eds) LATIN 2010: Theoretical Informatics. LATIN 2010. Lecture Notes in Computer Science, vol 6034. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12200-2_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12200-2_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12199-9

  • Online ISBN: 978-3-642-12200-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics