Abstract
We introduce the concepts of weighted ambiguity and deficiency for a mapping between two finite Abelian groups of the same size. Then we study the optimum lower bounds of these measures for a permutation of ℤ n and give a construction of permutations meeting the lower bound by modifying some permutation polynomials over finite fields. These permutations are also APN permutations.
The authors are partially supported by NSERC.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Colbourn, C.J., Dinitz, J.H. (eds.): Handbook of Combinatorial Designs, 2nd edn. Discrete Mathematics and its Applications. Chapman & Hall/CRC, Boca Raton (2007)
Costas, J.P.: A study of a class of detection waveforms having nearly ideal range-doppler ambiguity properties. Proceedings of IEEE 72, 996–1009 (1984)
Drakakis, K.: A review of Costas arrays. J. Appl. Math., Art. ID 26385, 32 (2006)
Drakakis, K., Gow, R., McGuire, G.: APN permutations on ℤ n and Costas arrays. Discrete Applied Mathematics 157(15), 3320–3326 (2009)
Lidl, R., Mullen, G.L.: Unsolved problems: when does a polynomial over a finite field permute the elements of the field? Amer. Math. Monthly 95(3), 243–246 (1988)
Lidl, R., Mullen, G.L.: Unsolved problems: when does a polynomial over a finite field permute the elements of the field? II. Amer. Math. Monthly 100(1), 71–74 (1993)
Lidl, R., Niederreiter, H.: Finite Fields, 2nd edn. Encyclopedia of Mathematics and its Applications, vol. 20. Cambridge University Press, Cambridge (1997); With a foreword by P. M. Cohn
Massey, J.: SAFER K 64: A byte-oriented block-ciphering algorithm. Fast Software Encryption, 1–17 (1993)
Mullen, G.L.: Permutation polynomials over finite fields. In: Finite fields, coding theory, and advances in communications and computing. LNPAM, vol. 141, pp. 131–151. Dekker, New York (1993)
Mullen, G.L., Stevens, H.: Polynomial functions (mod m). Acta Mathematica, Hungarica 44(3-4), 237–241 (1984)
Nyberg, K.: Differentially uniform mappings for cryptography. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 55–64. Springer, Heidelberg (1994)
Rivest, R.L.: Permutation polynomials modulo 2w. Finite Fields and their Applications 7, 287–292 (2001)
Shearer, J.B.: Difference triangle sets. In: Colbourn, C.J., Dinitz, J. (eds.) [1], ch. VI.19, pp. 436–440
Sun, J., Takeshita, O.Y.: Interleavers for Turbo codes using permutation polynomials over integer rings. IEEE Trans. Inform. Theory 51(1), 101–119 (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Panario, D., Stevens, B., Wang, Q. (2010). Ambiguity and Deficiency in Costas Arrays and APN Permutations. In: López-Ortiz, A. (eds) LATIN 2010: Theoretical Informatics. LATIN 2010. Lecture Notes in Computer Science, vol 6034. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12200-2_35
Download citation
DOI: https://doi.org/10.1007/978-3-642-12200-2_35
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-12199-9
Online ISBN: 978-3-642-12200-2
eBook Packages: Computer ScienceComputer Science (R0)