Abstract
Determining the optimal complexity of secret sharing schemes for every given access structure is a difficult and long-standing open problem in cryptology. Lower bounds have been found by a combinatorial method that uses polymatroids. In this paper, we point out that the best lower bound that can be obtained by this method can be determined by using linear programming, and this can be effectively done for access structures on a small number of participants. By applying this linear programming approach, we present better lower bounds on the optimal complexity and the optimal average complexity of several access structures. Finally, by adding the Ingleton inequality to the previous linear programming approach, we find a few examples of access structures for which there is a gap between the optimal complexity of linear secret sharing schemes and the combinatorial lower bound.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Anderson, I.: Combinatorics of Finite Sets. Oxford University Press, Oxford (1987)
Bazaraa, M., Jarvis, J., Sherali, H.: Linear Programming and Network Flows, 2nd edn. John Wiley& Sons, Chichester (1990)
Beimel, A., Ishai, Y.: On the power of nonlinear secret sharing schemes. SIAM J. Discrete Math. 19, 258–280 (2005)
Beimel, A., Livne, N.: On matroids and non-ideal secret sharing. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 482–501. Springer, Heidelberg (2006)
Beimel, A., Livne, N., Padró, C.: Matroids can be far from ideal secret sharing. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 194–212. Springer, Heidelberg (2008)
Beimel, A., Orlov, I.: Secret Sharing and Non-Shannon Information Inequalities. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 539–557. Springer, Heidelberg (2009)
Beimel, A., Weinreb, E.: Separating the power of monotone span programs over different fields. SIAM J. Comput. 34, 1196–1215 (2005)
Benaloh, J., Leichter, J.: Generalized secret sharing and monotone functions. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 27–35. Springer, Heidelberg (1990)
Blakley, G.R.: Safeguarding cryptographic keys. In: AFIPS Conf. P., vol. 48, pp. 313–317 (1979)
Blundo, C., de Santis, A., de Simone, R., Vaccaro, U.: Tight bounds on the information rate of secret sharing schemes. Design Code Cryptogr. 11, 107–122 (1997)
Chan, T.H., Guillé, L., Grant, A.: The minimal set of Ingleton inequalities (2008), http://arXiv.org/abs/0802.2574
Chen, B.-L., Sun, H.-M.: Weighted Decomposition Construction for Perfect Secret Sharing Schemes. Comput. Math. Appl. 43(6-7), 877–887 (2002)
Csirmaz, L.: The size of a share must be large. J. Cryptology 10, 223–231 (1997)
Csirmaz, L.: Secret sharing on the d-dimensional cube. Cryptology ePrint Archive. Report 2005/177 (2005), http://eprint.iacr.org
Csirmaz, L.: An impossibility result on graph secret sharing. Designs, Codes and Cryptography 53, 195–209 (2009)
Csirmaz, L., Tardos, G.: Secret sharing on trees: problem solved. Cryptology ePrint Archive (preprint, 2009), http://eprint.iacr.org/2009/071
van Dijk, M.: On the information rate of perfect secret sharing schemes. Des. Codes Cryptogr. 6, 143–169 (1995)
van Dijk, M.: More information theoretical inequalities to be used in secret sharing? Inform. Process. Lett. 63, 41–44 (1997)
van Dijk, M., Jackson, W.-A., Martin, K.M.: A note on duality in linear secret sharing schemes. Bull. Inst. Combin. Appl. 19, 93–101 (1997)
van Dijk, M., Kevenaar, T., Schrijen, G., Tuyls, P.: Improved constructions of secret sharing schemes by applying-(λ, ω)-decompositions. Inform. Process. Lett. 99 (4), 154–157 (2006)
Dougherty, R., Freiling, C., Zeger, K.: Six new non-Shannon information in- equalities. In: ISIT 2006, pp. 233–236 (2006)
Fehr, S.: Linear VSS and Distributes Commitments Based on Secret Sharing and Pairwise Checks. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 565–580. Springer, Heidelberg (2002)
Fujishige, S.: Polymatroidal Dependence Structure of a Set of Random Variables. Inform. and Control. 39, 55–72 (1978)
Ingleton, A.W.: Conditions for representability and transversability of matroids. In: Proc. Fr. Br. Conf. 1970, pp. 62–27 (1971)
Ito, M., Saito, A., Nishizeki, T.: Secret sharing scheme realizing any access structure. In: Proc. IEEE Globecom 1987, pp. 99–102 (1987)
Jackson, W.-A., Martin, K.M.: Geometric secret sharing schemes and their duals. Des. Codes Cryptogr. 4, 83–95 (1994)
Jackson, W.-A., Martin, K.M.: Perfect secret sharing schemes on five participants. Des. Codes Cryptogr. 9, 267–286 (1996)
Karnin, E.D., Greene, J.W., Hellman, M.E.: On secret sharing systems. IEEE Trans. Inform. Theory 29, 35–41 (1983)
Martí-Farré, J., Padró, C.: On Secret Sharing Schemes, Matroids and Polymatroids. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 273–290. Springer, Heidelberg (2007), Cryptology ePrint Archive, http://eprint.iacr.org/2006/077
Matúš, F.: Piecewise linear conditional information inequality. On IEEE Trans. Inform. Theory 44, 236–238 (2006)
Matúš, F.: Adhesivity of polymatroids. Discrete Math. 307, 2464–2477 (2007)
Matúš, F.: Infinitely many information inequalities. In: IEEE International Symposium on Information Theory 2007, pp. 41–44 (2007)
Shamir, A.: How to share a secret. Commun. of the ACM 22, 612–613 (1979)
Stinson, D.R.: An explication of secret sharing schemes. Des. Codes Cryptogr. 2, 357–390 (1992)
Stinson, D.R.: Decomposition constructions for secret-sharing schemes. IEEE Trans. Inform. Theory 40, 118–125 (1994)
Yeung, R.: A First Course in Information Theory. Kluwer Academic/Plenum Publishers (2002)
Zhang, Z., Yeung, R.W.: On characterization of entropy function via information inequalities. IEEE Trans. Inform. Theory 44, 1440–1452 (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Padró, C., Vázquez, L. (2010). Finding Lower Bounds on the Complexity of Secret Sharing Schemes by Linear Programming. In: López-Ortiz, A. (eds) LATIN 2010: Theoretical Informatics. LATIN 2010. Lecture Notes in Computer Science, vol 6034. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12200-2_31
Download citation
DOI: https://doi.org/10.1007/978-3-642-12200-2_31
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-12199-9
Online ISBN: 978-3-642-12200-2
eBook Packages: Computer ScienceComputer Science (R0)