Counting Reducible, Powerful, and Relatively Irreducible Multivariate Polynomials over Finite Fields | SpringerLink
Skip to main content

Counting Reducible, Powerful, and Relatively Irreducible Multivariate Polynomials over Finite Fields

(Extended Abstract)

  • Conference paper
LATIN 2010: Theoretical Informatics (LATIN 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6034))

Included in the following conference series:

  • 1034 Accesses

Abstract

We present counting methods for some special classes of multivariate polynomials over a finite field, namely the reducible ones, the s-powerful ones (divisible by the sth power of a nonconstant polynomial), and the relatively irreducible ones (irreducible but reducible over an extension field). One approach employs generating functions, another one a combinatorial method. They yield approximations with relative errors that essentially decrease exponentially in the input size.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Bodin, A.: Number of irreducible polynomials in several variables over finite fields. American Mathematical Monthly 115(7), 653–660 (2008)

    MATH  MathSciNet  Google Scholar 

  • Bodin, A.: Generating series for irreducible polynomials over finite fields (2009), http://arxiv.org/abs/0910.1680v2 (Accessed December 10, 2009)

  • Carlitz, L.: The distribution of irreducible polynomials in several indeterminates. Illinois Journal of Mathematics 7, 371–375 (1963)

    MATH  MathSciNet  Google Scholar 

  • Carlitz, L.: The distribution of irreducible polynomials in several indeterminates II. Canadian Journal of Mathematics 17, 261–266 (1965)

    MATH  Google Scholar 

  • Cohen, S.: The distribution of irreducible polynomials in several indeterminates over a finite field. Proceedings of the Edinburgh Mathematical Society 16, 1–17 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  • Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University Press, Cambridge (2009)

    MATH  Google Scholar 

  • Gao, S., Lauder, A.G.B.: Hensel Lifting and Bivariate Polynomial Factorisation over Finite Fields. Mathematics of Computation 71(240), 1663–1676 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  • von zur Gathen, J.: Counting reducible and singular bivariate polynomials. Finite Fields and Their Applications 14(4), 944–978 (2008) http://dx.doi.org/10.1016/j.ffa.2008.05.005 ; Extended abstract in Proceedings of the, International Symposium on Symbolic and Algebraic Computation ISSAC 2007, Waterloo, Ontario, Canada, pp. 369-376 (2008)

  • von zur Gathen, J., Viola, A., Ziegler, K.: Counting reducible, powerful, and relatively irreducible multivariate polynomials over finite fields (2009), http://arxiv.org/abs/0912.3312

  • Hou, X.-D., Mullen, G.L.: Number of Irreducible Polynomials and Pairs of Relatively Prime Polynomials in Several Variables over Finite Fields. Finite Fields and Their Applications 15(3), 304–331 (2009), http://dx.doi.org/10.1016/j.ffa.2008.12.004

    Article  MATH  MathSciNet  Google Scholar 

  • Wan, D.: Zeta Functions of Algebraic Cycles over Finite Fields. Manuscripta Mathematica 74, 413–444 (1992)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

von zur Gathen, J., Viola, A., Ziegler, K. (2010). Counting Reducible, Powerful, and Relatively Irreducible Multivariate Polynomials over Finite Fields. In: López-Ortiz, A. (eds) LATIN 2010: Theoretical Informatics. LATIN 2010. Lecture Notes in Computer Science, vol 6034. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12200-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12200-2_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12199-9

  • Online ISBN: 978-3-642-12200-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics