Complexity of Operations on Cofinite Languages | SpringerLink
Skip to main content

Complexity of Operations on Cofinite Languages

  • Conference paper
LATIN 2010: Theoretical Informatics (LATIN 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6034))

Included in the following conference series:

Abstract

We study the worst case complexity of regular operations on cofinite languages (i.e., languages whose complement is finite) and provide algorithms to compute efficiently the resulting minimal automata.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Yu, S., Zhuang, Q., Salomaa, K.: The state complexities of some basic operations on regular languages. Theor. Comput. Sci. 125(2), 315–328 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  2. Holzerand, M., Kutrib, M.: State complexity of basic operations on nondeterministic finite automata. In: Champarnaud, J.-M., Maurel, D. (eds.) CIAA 2002. LNCS, vol. 2608, pp. 148–157. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  3. Gruber, H., Holzer, M.: On the average state and transition complexity of finite languages. Theor. Comput. Sci. 387(2), 155–166 (2007)

    MATH  MathSciNet  Google Scholar 

  4. Jirásková, G., Okhotin, A.: On the state complexity of operations on two-way finite automata. In: [13], pp. 443–454

    Google Scholar 

  5. Campeanu, C., Culik II, K., Salomaa, K., Yu, S.: State complexity of basic operations on finite languages. In: Boldt, O., Jürgensen, H. (eds.) WIA 1999. LNCS, vol. 2214, pp. 60–70. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  6. Han, Y.S., Salomaa, K., Wood, D.: Nondeterministic state complexity of basic operations for prefix-free regular languages. Fundam. Inf. 90(1-2), 93–106 (2009)

    MATH  MathSciNet  Google Scholar 

  7. Ellul, K., Krawetz, B., Shallit, J., wei Wang, M.: Regular expressions: New results and open problems. Journal of Automata, Languages and Combinatorics 10(4), 407–437 (2005)

    MATH  MathSciNet  Google Scholar 

  8. Bassino, F., Giambruno, L., Nicaud, C.: The average state complexity of the star of a finite set of words is linear. In: [13], pp. 134–145

    Google Scholar 

  9. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, Reading (1979)

    MATH  Google Scholar 

  10. Revuz, D.: Minimisation of acyclic deterministic automata in linear time. Theor. Comput. Sci. 92(1), 181–189 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  11. Crochemore, M., Hancart, C., Lecroq, T.: Algorithms on strings. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  12. Berstel, J., Perrin, D.: Theory of Codes. Academic Press, London (1985)

    MATH  Google Scholar 

  13. Ito, M., Toyama, M. (eds.): DLT 2008. LNCS, vol. 5257. Springer, Heidelberg (2008)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bassino, F., Giambruno, L., Nicaud, C. (2010). Complexity of Operations on Cofinite Languages. In: López-Ortiz, A. (eds) LATIN 2010: Theoretical Informatics. LATIN 2010. Lecture Notes in Computer Science, vol 6034. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12200-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12200-2_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12199-9

  • Online ISBN: 978-3-642-12200-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics