Abstract
We study the worst case complexity of regular operations on cofinite languages (i.e., languages whose complement is finite) and provide algorithms to compute efficiently the resulting minimal automata.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Yu, S., Zhuang, Q., Salomaa, K.: The state complexities of some basic operations on regular languages. Theor. Comput. Sci. 125(2), 315–328 (1994)
Holzerand, M., Kutrib, M.: State complexity of basic operations on nondeterministic finite automata. In: Champarnaud, J.-M., Maurel, D. (eds.) CIAA 2002. LNCS, vol. 2608, pp. 148–157. Springer, Heidelberg (2001)
Gruber, H., Holzer, M.: On the average state and transition complexity of finite languages. Theor. Comput. Sci. 387(2), 155–166 (2007)
Jirásková, G., Okhotin, A.: On the state complexity of operations on two-way finite automata. In: [13], pp. 443–454
Campeanu, C., Culik II, K., Salomaa, K., Yu, S.: State complexity of basic operations on finite languages. In: Boldt, O., Jürgensen, H. (eds.) WIA 1999. LNCS, vol. 2214, pp. 60–70. Springer, Heidelberg (2001)
Han, Y.S., Salomaa, K., Wood, D.: Nondeterministic state complexity of basic operations for prefix-free regular languages. Fundam. Inf. 90(1-2), 93–106 (2009)
Ellul, K., Krawetz, B., Shallit, J., wei Wang, M.: Regular expressions: New results and open problems. Journal of Automata, Languages and Combinatorics 10(4), 407–437 (2005)
Bassino, F., Giambruno, L., Nicaud, C.: The average state complexity of the star of a finite set of words is linear. In: [13], pp. 134–145
Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, Reading (1979)
Revuz, D.: Minimisation of acyclic deterministic automata in linear time. Theor. Comput. Sci. 92(1), 181–189 (1992)
Crochemore, M., Hancart, C., Lecroq, T.: Algorithms on strings. Cambridge University Press, Cambridge (2007)
Berstel, J., Perrin, D.: Theory of Codes. Academic Press, London (1985)
Ito, M., Toyama, M. (eds.): DLT 2008. LNCS, vol. 5257. Springer, Heidelberg (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bassino, F., Giambruno, L., Nicaud, C. (2010). Complexity of Operations on Cofinite Languages. In: López-Ortiz, A. (eds) LATIN 2010: Theoretical Informatics. LATIN 2010. Lecture Notes in Computer Science, vol 6034. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12200-2_21
Download citation
DOI: https://doi.org/10.1007/978-3-642-12200-2_21
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-12199-9
Online ISBN: 978-3-642-12200-2
eBook Packages: Computer ScienceComputer Science (R0)