SRAD, Optical Flow and Primitive Prior Based Active Contours for Echocardiography | SpringerLink
Skip to main content

SRAD, Optical Flow and Primitive Prior Based Active Contours for Echocardiography

  • Conference paper
Computer Vision, Imaging and Computer Graphics. Theory and Applications (VISIGRAPP 2009)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 68))

Abstract

Accurate delineation of object borders is highly desirable in echocardiography, especially the left ventricle. Among other model-based techniques, active contours (or snakes) provide a unique and powerful approach to image analysis. In this work, we propose the use of a novel external energy for a gradient vector flow (GVF) snake. This energy consists of optical flow estimates of heart sequences along with the use of a speckle reducing anisotropic diffusion (SRAD) operator. This energy provides more information to the active contour model garnering adequate results for noisy moving sequences. Furthermore, an automatic primitive shape prior algorithm was employed to further improve the results and regularity of the snake, when dealing with especially speckle laden echocardiographic images. Results were compared with expert-defined segmentations yielding better sensitivity, precision rate and overlap ratio than the standard GVF model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Amini, A., Radeva, P., Elayyadi, M., Li, D.: Measurement of 3D motion of myocardial material points from explicit B-surface reconstruction of tagged MRI data. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 110–118. Springer, Heidelberg (1998)

    Google Scholar 

  2. Amini, A., Weymouth, T., Jain, R.: Using dynamic programming for solving variational problems in vision. IEEE Trans. on Pattern Analysis in Machine Intelligence 12(9), 855–866 (1990)

    Article  Google Scholar 

  3. Barron, J., Fleet, D., Beauchemin, D.: Performance of optical flow techniques. Int. J. of Computer Vision 12(1), 43–77 (1994)

    Article  Google Scholar 

  4. Choy, M., Jin, J.: Morphological image analysis of left ventricular endocardial borders in 2D echocardiograms. In: SPIE Proceedings on Medical Imaging, vol. 2710, pp. 852–864 (1996)

    Google Scholar 

  5. Cohen, L.: On active contour models and balloons. Computer Vision, Graphics, and Image Processing: Image Understanding 53(2), 211–218 (1991)

    Google Scholar 

  6. Cohen, L., Cohen, I.: Finite-element methods for active contour models and balloons for 2-D and 3-D images. IEEE Trans. on Pattern Analysis and Machine Intelligence 15(11), 1131–1147 (1993)

    Article  Google Scholar 

  7. Felix-Gonzalez, N., Valdes-Cristerna, R.: 3D echocardiographic segmentation using the mean-shift algorithm and an active surface model. In: Medical Imaging. SPIE, vol. 6144, pp. 147–151 (2006)

    Google Scholar 

  8. Hamou, A., El-Sakka, M.: An SRAD and optical flow based external energy for echocardiograms. In: Int. Conf. of Image Processing (2009)

    Google Scholar 

  9. Hamou, A., El-Sakka, M.: Active contours with Optical Flow and Primitive Shape Priors for echocardiographic Imagery. In: Int. Conf. of Imaging Theory and Applications, pp. 111–118 (2009)

    Google Scholar 

  10. Hamou, A., Osman, S., El-Sakka, M.: Carotid ultrasound segmentation using DP active contours. In: Kamel, M.S., Campilho, A. (eds.) ICIAR 2007. LNCS, vol. 4633, pp. 961–971. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  11. Horn, B., Schunck, B.: Determining optical flow. Artificial Intelligence 17, 185–203 (1981)

    Article  Google Scholar 

  12. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. of Computer Vision 1(4), 321–331 (1987)

    Article  Google Scholar 

  13. Leung, K., van Stralen, M., van Burken, G., Voormolen, M., Nemes, A., ten Cate, F., de Jong, N., van der Steen, A., Reiber, J., Bosch, J.: Sparse appearance model based registration of 3D ultrasound images. In: Yang, G.-Z., Jiang, T.-Z., Shen, D., Gu, L., Yang, J. (eds.) MIAR 2006. LNCS, vol. 4091, pp. 236–243. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  14. Lucas, B., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: Proceedings of Imaging Understanding Workshop, pp. 121–130 (1981)

    Google Scholar 

  15. Mallouche, H., de Guise, J., Goussard, Y.: Probabilistic model of multiple dynamic curve matching for a semitransparent scene. In: Vision Geometry IV, vol. 2573, pp. 148–157 (1995)

    Google Scholar 

  16. Mazumdar, B., Mediratta, A., Bhattacharyya, J., Banerjee, S.: A real time speckle noise cleaning filter for ultrasound images. In: IEEE Symposium on Computer-Based Medical Systems, pp. 341–346 (2006)

    Google Scholar 

  17. Montagnat, J., Delingette, H.: Space and time shape constrained deformable surfaces for 4D medical image segmentation. In: Delp, S.L., DiGoia, A.M., Jaramaz, B. (eds.) MICCAI 2000. LNCS, vol. 1935, pp. 196–205. Springer, Heidelberg (2000)

    Google Scholar 

  18. Papademetris, X., Sinusas, A., Dione, D., Duncan, J.: 3D cardiac deformation from ultrasound images. In: Taylor, C., Colchester, A. (eds.) MICCAI 1999. LNCS, vol. 1679, pp. 420–429. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  19. Park, H., Chung, M.: A new external force for active contour model: virtual electric field. In: Int. Conf. on Visualization, Imaging and Image Processing, pp. 103–106 (2002)

    Google Scholar 

  20. Perona, P., Malik, J.: Scale space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Analysis Machine Intelligence 12(7), 629–639 (1990)

    Article  Google Scholar 

  21. Szeliski, R., Tonnesen, D.: Surface modeling with oriented particle systems. SIGGRAPH: Computer Graphics 26(2), 185–194 (1992)

    Article  Google Scholar 

  22. Tauber, C., Batatia, H., Ayache, A.: Robust B-spline snakes for ultrasound image segmentation. J. of Signal Processing Systems 54(1), 159–169 (2009)

    Article  Google Scholar 

  23. Williams, D., Shah, M.: A fast algorithm for active contours and curvature estimation. Computer Vision Graphics and Image Processing: Image Understanding 55(1), 14–26 (1992)

    MATH  Google Scholar 

  24. Xu, C., Prince, J.: Snakes, shapes, and gradient vector flow. IEEE Trans. on Image Processing 7(3), 359–369 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  25. Yu, Y., Acton, S.: Speckle reducing anisotropic diffusion. IEEE Trans. on Image Processing 11(11), 1260–1270 (2002)

    Article  MathSciNet  Google Scholar 

  26. Yu, Y., Acton, S.: Edge detection in ultrasound imagery using the instantaneous coefficient of variation. IEEE Trans. on Image Processing 13(12), 1640–1655 (2004)

    Article  Google Scholar 

  27. Zhou, S., Liangbin, C.W.: A new method for robust contour tracking in cardiac image sequences. In: IEEE Int. Symposium on Biomedical Imaging: Nano to Macro, vol. 1, pp. 181–184 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hamou, A.K., El-Sakka, M.R. (2010). SRAD, Optical Flow and Primitive Prior Based Active Contours for Echocardiography. In: Ranchordas, A., Pereira, J.M., Araújo, H.J., Tavares, J.M.R.S. (eds) Computer Vision, Imaging and Computer Graphics. Theory and Applications. VISIGRAPP 2009. Communications in Computer and Information Science, vol 68. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11840-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11840-1_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11839-5

  • Online ISBN: 978-3-642-11840-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics