Stereo Analysis of Archaelogical Scenes Using Monogenic Signal Representation | SpringerLink
Skip to main content

Stereo Analysis of Archaelogical Scenes Using Monogenic Signal Representation

  • Conference paper
Computer Vision, Imaging and Computer Graphics. Theory and Applications (VISIGRAPP 2009)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 68))

  • 1063 Accesses

Abstract

This paper presents the results of an experimental study regarding the application of recent stereo analysis theories in the frequency domain, particularly the phase congruency and monogenic filtering methods. The initial approach to the stereo matching problem employed feature based correlation methods. However, the requirement for more dense depth-map output led us to the development of disparity map estimation methods, minimizing a matching cost function between image regions or pixels. The cost function consists of a newly proposed similarity measure function, based on the geometrical properties of the monogenic signal. Our goal was to examine the performance of these methods in a stereo matching problem setting, on photos of complicated scenes. Two objects were used for this purpose: (i) a scene from an ancient Greek temple of Acropolis and (ii) the outside scene of the gate of an ancient theatre. Due to the complex structure of the photographed objects, classic techniques used for stereo matching give poor results. On the contrary, the three-dimensional models and disparity map of the scene computed when applying the proposed method, are much more detailed and consistent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alifragis, M., Tzafestas, C.S.: Stereo pair matching of archaeological scenes using phase domain methods. In: Proceedings VISIGRAPP 2009, Lisbon (2009)

    Google Scholar 

  2. Barnard, S.T.: Stochastic stereo matching over scale. International Journal of Computer Vision 3(1), 17–32 (1989)

    Article  MathSciNet  Google Scholar 

  3. Canny, F.: A computational approach to edge detection. IEEE Trans. Pattern Analysis and Machine Intelligence 8, 112–131 (1986)

    Article  Google Scholar 

  4. Geman, D., Geman, S., Graffigne, C., Dong, P.: Boundary detection by constrained optimization. IEEE Transactions on Pattern Analysis and Machine Intelligence 12(7), 609–628 (1990)

    Article  Google Scholar 

  5. Faugeras, O.: Three-dimensional computer vision: A geometric viewpoint (1993)

    Google Scholar 

  6. Felsberg, M., Sommer, G.: The monogenic signal. IEEE Transactions on Signal Processing 49(12) (December 2001)

    Google Scholar 

  7. Field, D.J.: Relations between the statistics of natural images and the response properties of cortical cells. Journal of The Optical Society of America A 4(12), 2379–2394 (1987)

    Article  Google Scholar 

  8. Fleck, M.M.: Multiple widths yield reliable finite differences. IEEE Transactions on Pattern Analysis and Machine Intelligence 14(3), 337–345 (1992)

    Article  Google Scholar 

  9. Geman, S., Geman, D.: Stochastic relaxation, gibbs distributions, and the bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence 6, 721–741 (1984)

    Article  MATH  Google Scholar 

  10. Hartley, R.: In defence of the eight-point algorithm. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(6), 580–593 (1997)

    Article  Google Scholar 

  11. Hartley, R., Zisserman, A.: Multiview Geometry in Computer Vision. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  12. Marroquin, J., Mitter, S., Poggio, T.: Probabilistic solution of ill-posed problems in computational vision. Journal of the American Statistical Association 82(397), 76–89 (1987)

    Article  MATH  Google Scholar 

  13. Koch, R., Pollefeys, M., Gool, L.V.: Automatic 3d model acquisition from uncalibrated image. In: Proceedings Computer Graphics International, Hannover, pp. 597–604 (1998)

    Google Scholar 

  14. Kovesi, P.D.: Matlab and octave functions for computer vision and image processing, http://www.csse.uwa.edu.au/~pk/research/matlabfns

  15. Kovesi, P.D.: Image correlation from local frequency information. In: The Australian Pattern Recognition Society Conference: DICTA 1995, Brisbane, pp. 336–341 (1995)

    Google Scholar 

  16. Kovesi, P.D.: Image features from phase congruency. Videre: A Journal of Computer Vision Research (1999)

    Google Scholar 

  17. Lowe, D.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  18. Marr, D., Hildreth, E.C.: Theory of edge detection. Proceedings of the Royal Society, London B, 187–217 (1980)

    Google Scholar 

  19. Krüger, N., Felsberg, M., Gebken, C.: An explicit and compact coding of geometric and structural information applied to stereo processing. In: Vision, Modeling, and Visualization, Erlangen (2002)

    Google Scholar 

  20. Middlebury stereo website, http://www.middlebury.edu/stereo

  21. Potts, R.: Some generalized order-disorder transformation. Proceedings of the Cambridge Philosophical Society 48, 106–109 (1952)

    Article  MATH  MathSciNet  Google Scholar 

  22. Scharstein, D., Szeliski, R.: Stereo matching with nonlinear diffusion. International Journal of Computer Vision 28(2), 155–174 (1998)

    Article  Google Scholar 

  23. Terzopoulos, D.: Regularization of inverse visual problems involving discontinuities. IEEE Transactions on Pattern Analysis and Machine Intelligence 8(4), 413–424 (1986)

    Article  Google Scholar 

  24. Venkatesh, S., Owens, R.: An energy feature detection scheme. In: International Conference on Image Processing, Singapore, pp. 553–557 (1989)

    Google Scholar 

  25. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Transactions on Pattern Analysis & Machine Intelligence 23(11), 1222–1239 (2001)

    Article  Google Scholar 

  26. Zhang, Z.: A flexible new technique for camera calibration. In: International Conference on Computer Vision, Kerkyra, Greece (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Alifragis, M., Tzafestas, C.S. (2010). Stereo Analysis of Archaelogical Scenes Using Monogenic Signal Representation. In: Ranchordas, A., Pereira, J.M., Araújo, H.J., Tavares, J.M.R.S. (eds) Computer Vision, Imaging and Computer Graphics. Theory and Applications. VISIGRAPP 2009. Communications in Computer and Information Science, vol 68. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11840-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11840-1_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11839-5

  • Online ISBN: 978-3-642-11840-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics