From Natural Language Descriptions in Clinical Guidelines to Relationships in an Ontology | SpringerLink
Skip to main content

From Natural Language Descriptions in Clinical Guidelines to Relationships in an Ontology

  • Conference paper
Knowledge Representation for Health-Care. Data, Processes and Guidelines (KR4HC 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5943))

Included in the following conference series:

Abstract

Knowledge Engineering allows to automate entity recognition and relation extraction from clinical texts, which in turn can be used to facilitate clinical practice guideline (CPG) modeling. This paper presents a method to recognize diagnosis and therapy entities, and to identify relationships between these entities from CPG free-text documents. Our approach applies a sequential combination of several basic methods classically used in knowledge engineering (natural language processing techniques, manually authored grammars, lexicons and ontologies), to gradually map sentences describing diagnostic and therapeutic procedures to an ontology. First, using a standardized vocabulary, our method automatically identifies guideline concepts. Next, for each sentence, it determines the patient conditions under which the descriptive knowledge of the sentence is valid. Then, it detects the central information units in the sentence, in order to match the sentence with a small set of predefined relationships. The approach enables automated extraction of relationships about findings that have manifestation in a disease, and procedures that diagnose or treat a disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Rosser, W., Davis, D., Gilbart, E.: Promoting effective guideline use in ontario. JAMC 165(2), 181–182 (2001)

    Google Scholar 

  2. Grimshaw, J.M., Russel, I.T.: Implementing clinical practice guidelines: can guidelines be used to improve clinical practice? Effective Health Care 8, 1–12 (1994)

    Google Scholar 

  3. de Clercq, P.A., Blom, J.A., Korsten, H.H.M., Hasman, A.: Approaches for creating computer-interpretable guidelines that facilitate decision support. Artificial Intelligence in Medicine 31(1), 1–27 (2004); Review article

    Article  Google Scholar 

  4. Isern, D., Moreno, A.: Computer-based execution of clinical guidelines: A review. International Journal of Medical Informatics 77(12), 787–808 (2008)

    Article  Google Scholar 

  5. Miksch, S., Shahar, Y., Johnson, P.: Asbru: A task-specific, intention-based, and time-oriented language for representing skeletal plans. In: Motta, E., van Harmelen, F., Pierret-Golbreich, C., Filby, I., Wijngaards, N. (eds.) Proceedings of Seventh Workshop on Knowledge Engineering: Methods and Languages (KELM 1997), Milton Keynes, UK (1997)

    Google Scholar 

  6. Musen, M., Tu, S., Das, A., Shahar, Y.: EON: a component-based approach to automation of protocol-directed therapy. Journal of the American Medical Informatics Association 3, 367–388 (1996)

    Article  Google Scholar 

  7. Boxwala, A., Peleg, M., Tu, S., Ogunyemi, O., Zeng, Q., Swang, D., Patel, V., Greenes, R., Shortlife, E.: GLIF3: a representation format for sharable computer-interpretable clinical practise guidelines. Journal of Biomedical Informatics 37, 147–161 (2004)

    Google Scholar 

  8. Ciccarese, P., Caffi, E., Quaglini, S., Stefanelli, M.: Architectures and tools for innovative health information systems: the guide project. International Journal of Medical Informatics 74, 553–562 (2005)

    Article  Google Scholar 

  9. Carbonell, J., Etzioni, O., Gil, Y., Joseph, R., Knoblock, C., Minton, S., Veloso, M.: PRODIGY: an integrated architecture for planning and learning. ACM SIGART Bulletin 2(4), 51–55 (1991)

    Article  Google Scholar 

  10. Sutton, D., Fox, J.: The syntax and semantics of the PROforma guideline modeling language. Journal of the American Medical Informatics Association 10, 433–443 (2003)

    Article  Google Scholar 

  11. Sonnenberg, F., Hagerty, C.: Computer-interpretable clinical practice guidelines. where are we and where are we going? Yearb Med. Inform., 145–158 (2006); Review article

    Google Scholar 

  12. Kosara, R., Miksch, S., Shahar, Y., Johnson, P.: AsbruView: Capturing complex, time-oriented plans beyond ow-charts. Thinking with Diagrams, vol. 98, August 1998, pp. 22–23 (1998)

    Google Scholar 

  13. InferMed., Arezzo Technical White Paper, T.r., http://www.infermed.com/

  14. Steele, R., Fox, J.: Tallis PROforma primer - introduction to proforma language and software with worked examples. Technical report, Advanced Computation Laboratory, Cancer Research, London, UK

    Google Scholar 

  15. Gennari, J., Musen, M., Fergerson, R., Grosso, W., Crubézy, M., Eriksson, H., Noy, N., Tu, S.: The evolution of Protègè: an environment for knowledge-based systems development. International Journal of Human-Computer Studies 58(1), 89–123 (2003)

    Article  Google Scholar 

  16. Kaiser, K., Akkaya, C., Miksch, S.: How can information extraction ease formalizing treatment processes in clinical practice guidelines? a method and its evaluation. Artificial Intelligence in Medicine 39(2), 151–163 (2007)

    Article  Google Scholar 

  17. Serban, R., ten Teije, A., van Harmelen, F., Marcos, M., Polo-Conde, C.: Extraction and use of linguistic patterns for modelling medical guidelines. Artificial Intelligence in Medicine 39(2), 137–149 (2007)

    Article  Google Scholar 

  18. Rassinoux, A.M., Baud, R., Scherrer, J.R.: A multilingual analyser form medical texts (1994), http://mbi.dkfz-heidelberg.de/helios/doc/nlp/Rassinoux94b.html

  19. Friedman, C., Liu, H., Shagina, L., Johnson, S., Hripcsak, G.: Evaluating the UMLS as a source of lexical knowledge for medical language processing. In: Proc. AMIA Symp., pp. 189–193 (2001)

    Google Scholar 

  20. Denecke, K.: Semantic structuring of and information extraction from medical documents using the umls. Methods Inf. Med. 47(5), 425–434 (2008)

    Google Scholar 

  21. Bodenreider, O.: Lexical, terminological and ontological resources for biological text mining. In: Ananiadou, S., McNaught, J. (eds.) Text mining for biology and biomedicine, pp. 43–66. Artech House, Boston (2006)

    Google Scholar 

  22. Lindberg, D., Humphreys, B., Mc Cray, A.: The unified medical language system. Methods of Information in Medicine 32, 281–291 (1993)

    Google Scholar 

  23. Gruber, T.: Encyclopedia of Database Systems. In: Liu, L., Tamer, M. (eds.) Ontology

    Google Scholar 

  24. Gómez-Pérez, A., Fernández-López, M., Corcho, O.: Ontological Engineering: With Examples from the Areas of Knowledge Management, E-commerce and the Semantic Web. Springer, Heidelberg (2004)

    Google Scholar 

  25. Swedberg, K.: Guidelines for the diagnosis and treatment of chronic heart failure:executive summary (update 2005). European Heart Journal 26, 1115–1140 (2005)

    Article  Google Scholar 

  26. Andreopoulos, B., Alexopoulou, D., Schroeder, M.: Word sense disambiguation in biomedical ontologies with term co-occurrence analysis and document clustering. Int. J. Data Mining and Bioinformatics 2(3), 193–215 (2008)

    Article  Google Scholar 

  27. Chapman, W., Bridewell, W., Hanbury, P., Cooper, G.F., Buchanan, B.G.: A simple algorithm for identifying negated findings and diseases in discharge summaries. Journal of Biomedical Informatics 35(5), 301–310 (2001)

    Article  Google Scholar 

  28. Diallo, G., Kostkova, P., Jawaheer, G., Jupp, S., Stevens, R.: Process of building a vocabulary for the infection domain. In: 21st IEEE International Symposium on Computer-Based Medical Systems, Jyvaskyla, Finland, June 17-19 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Taboada, M., Meizoso, M., Riaño, D., Alonso, A., Martínez, D. (2010). From Natural Language Descriptions in Clinical Guidelines to Relationships in an Ontology. In: Riaño, D., ten Teije, A., Miksch, S., Peleg, M. (eds) Knowledge Representation for Health-Care. Data, Processes and Guidelines. KR4HC 2009. Lecture Notes in Computer Science(), vol 5943. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11808-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11808-1_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11807-4

  • Online ISBN: 978-3-642-11808-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics