Abstract
Knowledge Engineering allows to automate entity recognition and relation extraction from clinical texts, which in turn can be used to facilitate clinical practice guideline (CPG) modeling. This paper presents a method to recognize diagnosis and therapy entities, and to identify relationships between these entities from CPG free-text documents. Our approach applies a sequential combination of several basic methods classically used in knowledge engineering (natural language processing techniques, manually authored grammars, lexicons and ontologies), to gradually map sentences describing diagnostic and therapeutic procedures to an ontology. First, using a standardized vocabulary, our method automatically identifies guideline concepts. Next, for each sentence, it determines the patient conditions under which the descriptive knowledge of the sentence is valid. Then, it detects the central information units in the sentence, in order to match the sentence with a small set of predefined relationships. The approach enables automated extraction of relationships about findings that have manifestation in a disease, and procedures that diagnose or treat a disease.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Rosser, W., Davis, D., Gilbart, E.: Promoting effective guideline use in ontario. JAMC 165(2), 181–182 (2001)
Grimshaw, J.M., Russel, I.T.: Implementing clinical practice guidelines: can guidelines be used to improve clinical practice? Effective Health Care 8, 1–12 (1994)
de Clercq, P.A., Blom, J.A., Korsten, H.H.M., Hasman, A.: Approaches for creating computer-interpretable guidelines that facilitate decision support. Artificial Intelligence in Medicine 31(1), 1–27 (2004); Review article
Isern, D., Moreno, A.: Computer-based execution of clinical guidelines: A review. International Journal of Medical Informatics 77(12), 787–808 (2008)
Miksch, S., Shahar, Y., Johnson, P.: Asbru: A task-specific, intention-based, and time-oriented language for representing skeletal plans. In: Motta, E., van Harmelen, F., Pierret-Golbreich, C., Filby, I., Wijngaards, N. (eds.) Proceedings of Seventh Workshop on Knowledge Engineering: Methods and Languages (KELM 1997), Milton Keynes, UK (1997)
Musen, M., Tu, S., Das, A., Shahar, Y.: EON: a component-based approach to automation of protocol-directed therapy. Journal of the American Medical Informatics Association 3, 367–388 (1996)
Boxwala, A., Peleg, M., Tu, S., Ogunyemi, O., Zeng, Q., Swang, D., Patel, V., Greenes, R., Shortlife, E.: GLIF3: a representation format for sharable computer-interpretable clinical practise guidelines. Journal of Biomedical Informatics 37, 147–161 (2004)
Ciccarese, P., Caffi, E., Quaglini, S., Stefanelli, M.: Architectures and tools for innovative health information systems: the guide project. International Journal of Medical Informatics 74, 553–562 (2005)
Carbonell, J., Etzioni, O., Gil, Y., Joseph, R., Knoblock, C., Minton, S., Veloso, M.: PRODIGY: an integrated architecture for planning and learning. ACM SIGART Bulletin 2(4), 51–55 (1991)
Sutton, D., Fox, J.: The syntax and semantics of the PROforma guideline modeling language. Journal of the American Medical Informatics Association 10, 433–443 (2003)
Sonnenberg, F., Hagerty, C.: Computer-interpretable clinical practice guidelines. where are we and where are we going? Yearb Med. Inform., 145–158 (2006); Review article
Kosara, R., Miksch, S., Shahar, Y., Johnson, P.: AsbruView: Capturing complex, time-oriented plans beyond ow-charts. Thinking with Diagrams, vol. 98, August 1998, pp. 22–23 (1998)
InferMed., Arezzo Technical White Paper, T.r., http://www.infermed.com/
Steele, R., Fox, J.: Tallis PROforma primer - introduction to proforma language and software with worked examples. Technical report, Advanced Computation Laboratory, Cancer Research, London, UK
Gennari, J., Musen, M., Fergerson, R., Grosso, W., Crubézy, M., Eriksson, H., Noy, N., Tu, S.: The evolution of Protègè: an environment for knowledge-based systems development. International Journal of Human-Computer Studies 58(1), 89–123 (2003)
Kaiser, K., Akkaya, C., Miksch, S.: How can information extraction ease formalizing treatment processes in clinical practice guidelines? a method and its evaluation. Artificial Intelligence in Medicine 39(2), 151–163 (2007)
Serban, R., ten Teije, A., van Harmelen, F., Marcos, M., Polo-Conde, C.: Extraction and use of linguistic patterns for modelling medical guidelines. Artificial Intelligence in Medicine 39(2), 137–149 (2007)
Rassinoux, A.M., Baud, R., Scherrer, J.R.: A multilingual analyser form medical texts (1994), http://mbi.dkfz-heidelberg.de/helios/doc/nlp/Rassinoux94b.html
Friedman, C., Liu, H., Shagina, L., Johnson, S., Hripcsak, G.: Evaluating the UMLS as a source of lexical knowledge for medical language processing. In: Proc. AMIA Symp., pp. 189–193 (2001)
Denecke, K.: Semantic structuring of and information extraction from medical documents using the umls. Methods Inf. Med. 47(5), 425–434 (2008)
Bodenreider, O.: Lexical, terminological and ontological resources for biological text mining. In: Ananiadou, S., McNaught, J. (eds.) Text mining for biology and biomedicine, pp. 43–66. Artech House, Boston (2006)
Lindberg, D., Humphreys, B., Mc Cray, A.: The unified medical language system. Methods of Information in Medicine 32, 281–291 (1993)
Gruber, T.: Encyclopedia of Database Systems. In: Liu, L., Tamer, M. (eds.) Ontology
Gómez-Pérez, A., Fernández-López, M., Corcho, O.: Ontological Engineering: With Examples from the Areas of Knowledge Management, E-commerce and the Semantic Web. Springer, Heidelberg (2004)
Swedberg, K.: Guidelines for the diagnosis and treatment of chronic heart failure:executive summary (update 2005). European Heart Journal 26, 1115–1140 (2005)
Andreopoulos, B., Alexopoulou, D., Schroeder, M.: Word sense disambiguation in biomedical ontologies with term co-occurrence analysis and document clustering. Int. J. Data Mining and Bioinformatics 2(3), 193–215 (2008)
Chapman, W., Bridewell, W., Hanbury, P., Cooper, G.F., Buchanan, B.G.: A simple algorithm for identifying negated findings and diseases in discharge summaries. Journal of Biomedical Informatics 35(5), 301–310 (2001)
Diallo, G., Kostkova, P., Jawaheer, G., Jupp, S., Stevens, R.: Process of building a vocabulary for the infection domain. In: 21st IEEE International Symposium on Computer-Based Medical Systems, Jyvaskyla, Finland, June 17-19 (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Taboada, M., Meizoso, M., Riaño, D., Alonso, A., Martínez, D. (2010). From Natural Language Descriptions in Clinical Guidelines to Relationships in an Ontology. In: Riaño, D., ten Teije, A., Miksch, S., Peleg, M. (eds) Knowledge Representation for Health-Care. Data, Processes and Guidelines. KR4HC 2009. Lecture Notes in Computer Science(), vol 5943. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11808-1_3
Download citation
DOI: https://doi.org/10.1007/978-3-642-11808-1_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-11807-4
Online ISBN: 978-3-642-11808-1
eBook Packages: Computer ScienceComputer Science (R0)