Some Geometrical Aspects of Control Points for Toric Patches | SpringerLink
Skip to main content

Some Geometrical Aspects of Control Points for Toric Patches

  • Conference paper
Mathematical Methods for Curves and Surfaces (MMCS 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5862))

Abstract

We use ideas from algebraic geometry and dynamical systems to explain some ways that control points influence the shape of a Bézier curve or patch. In particular, we establish a generalization of Birch’s Theorem and use it to deduce sufficient conditions on the control points for a patch to be injective. We also explain a way that the control points influence the shape via degenerations to regular control polytopes. The natural objects of this investigation are irrational patches, which are a generalization of Krasauskas’s toric patches, and include Bézier and tensor product patches as important special cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Dahmen, W.: Convexity and Bernstein-Bézier polynomials. In: Curves and surfaces (Chamonix-Mont-Blanc, 1990), pp. 107–134. Academic Press, Boston (1991)

    Chapter  Google Scholar 

  2. Craciun, G., Feinberg, M.: Multiple equilibria in complex chemical reaction networks. I. The injectivity property. SIAM J. Appl. Math. 65(5), 1526–1546 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Krasauskas, R.: Toric surface patches. Adv. Comput. Math. 17(1-2), 89–133 (2002); Advances in geometrical algorithms and representations

    Google Scholar 

  4. Brown, L.D.: Fundamentals of statistical exponential families with applications in statistical decision theory. Institute of Mathematical Statistics Lecture Notes—Monograph Series, 9. Institute of Mathematical Statistics, Hayward, CA (1986)

    Google Scholar 

  5. Darroch, J.N., Ratcliff, D.: Generalized iterative scaling for log-linear models. Ann. Math. Statist. 43, 1470–1480 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  6. Sottile, F.: Toric ideals, real toric varieties, and the moment map. In: Topics in algebraic geometry and geometric modeling. Contemp. Math., vol. 334, pp. 225–240. Amer. Math. Soc., Providence (2003)

    Chapter  Google Scholar 

  7. Garcia-Puente, L.D., Sottile, F.: Linear precision for parametric patches. Advances in Computational Mathematics (to appear, 2009)

    Google Scholar 

  8. Karčiauskas, K., Krasauskas, R.: Comparison of different multisided patches using algebraic geometry. In: Laurent, P.J., Sablonniere, P., Schumaker, L. (eds.) Curve and Surface Design: Saint-Malo 1999, pp. 163–172. Vanderbilt University Press, Nashville (2000)

    Google Scholar 

  9. Cox, D.: What is a toric variety? In: Topics in algebraic geometry and geometric modeling. Contemp. Math., vol. 334, pp. 203–223. Amer. Math. Soc., Providence (2003)

    Chapter  Google Scholar 

  10. DeRose, T., Goldman, R., Hagen, H., Mann, S.: Functional composition algorithms via blossoming. ACM Trans. on Graphics 12, 113–135 (1993)

    Article  MATH  Google Scholar 

  11. Fulton, W.: Introduction to toric varieties. Annals of Mathematics Studies, vol. 131. Princeton University Press, Princeton (1993); The William H. Roever Lectures in Geometry

    Book  MATH  Google Scholar 

  12. Agresti, A.: Categorical Data Analysis. Wiley series in Probability and Mathematical Statistics. Wiley, New York (1990)

    MATH  Google Scholar 

  13. Graf von Bothmer, H.C., Ranestad, K., Sottile, F.: Linear precision for toric surface patches, ArXiv:math/0806.3230 (2007)

    Google Scholar 

  14. Pachter, L., Sturmfels, B. (eds.): Algebraic statistics for computational biology. Cambridge University Press, New York (2005)

    MATH  Google Scholar 

  15. Keller, O.: Ganze cremonatransformationen. Monatschr. Math. Phys. 47, 229–306 (1939)

    MathSciNet  Google Scholar 

  16. Pinchuk, S.: A counterexample to the strong real Jacobian conjecture. Math. Z. 217(1), 1–4 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dahmen, W., Micchelli, C.A.: Convexity of multivariate Bernstein polynomials and box spline surfaces. Studia Sci. Math. Hungar. 23(1-2), 265–287 (1988)

    MathSciNet  MATH  Google Scholar 

  18. Leroy, R.: Certificats de positivité et minimisation polynomiale dans la base de Bernstein multivariée. PhD thesis, Institut de Recherche Mathématique de Rennes (2008)

    Google Scholar 

  19. Sturmfels, B.: Gröbner bases and convex polytopes. American Mathematical Society, Providence (1996)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Craciun, G., García-Puente, L.D., Sottile, F. (2010). Some Geometrical Aspects of Control Points for Toric Patches. In: Dæhlen, M., Floater, M., Lyche, T., Merrien, JL., Mørken, K., Schumaker, L.L. (eds) Mathematical Methods for Curves and Surfaces. MMCS 2008. Lecture Notes in Computer Science, vol 5862. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11620-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11620-9_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11619-3

  • Online ISBN: 978-3-642-11620-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics