Abstract
We use ideas from algebraic geometry and dynamical systems to explain some ways that control points influence the shape of a Bézier curve or patch. In particular, we establish a generalization of Birch’s Theorem and use it to deduce sufficient conditions on the control points for a patch to be injective. We also explain a way that the control points influence the shape via degenerations to regular control polytopes. The natural objects of this investigation are irrational patches, which are a generalization of Krasauskas’s toric patches, and include Bézier and tensor product patches as important special cases.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Dahmen, W.: Convexity and Bernstein-Bézier polynomials. In: Curves and surfaces (Chamonix-Mont-Blanc, 1990), pp. 107–134. Academic Press, Boston (1991)
Craciun, G., Feinberg, M.: Multiple equilibria in complex chemical reaction networks. I. The injectivity property. SIAM J. Appl. Math. 65(5), 1526–1546 (2005)
Krasauskas, R.: Toric surface patches. Adv. Comput. Math. 17(1-2), 89–133 (2002); Advances in geometrical algorithms and representations
Brown, L.D.: Fundamentals of statistical exponential families with applications in statistical decision theory. Institute of Mathematical Statistics Lecture Notes—Monograph Series, 9. Institute of Mathematical Statistics, Hayward, CA (1986)
Darroch, J.N., Ratcliff, D.: Generalized iterative scaling for log-linear models. Ann. Math. Statist. 43, 1470–1480 (1972)
Sottile, F.: Toric ideals, real toric varieties, and the moment map. In: Topics in algebraic geometry and geometric modeling. Contemp. Math., vol. 334, pp. 225–240. Amer. Math. Soc., Providence (2003)
Garcia-Puente, L.D., Sottile, F.: Linear precision for parametric patches. Advances in Computational Mathematics (to appear, 2009)
Karčiauskas, K., Krasauskas, R.: Comparison of different multisided patches using algebraic geometry. In: Laurent, P.J., Sablonniere, P., Schumaker, L. (eds.) Curve and Surface Design: Saint-Malo 1999, pp. 163–172. Vanderbilt University Press, Nashville (2000)
Cox, D.: What is a toric variety? In: Topics in algebraic geometry and geometric modeling. Contemp. Math., vol. 334, pp. 203–223. Amer. Math. Soc., Providence (2003)
DeRose, T., Goldman, R., Hagen, H., Mann, S.: Functional composition algorithms via blossoming. ACM Trans. on Graphics 12, 113–135 (1993)
Fulton, W.: Introduction to toric varieties. Annals of Mathematics Studies, vol. 131. Princeton University Press, Princeton (1993); The William H. Roever Lectures in Geometry
Agresti, A.: Categorical Data Analysis. Wiley series in Probability and Mathematical Statistics. Wiley, New York (1990)
Graf von Bothmer, H.C., Ranestad, K., Sottile, F.: Linear precision for toric surface patches, ArXiv:math/0806.3230 (2007)
Pachter, L., Sturmfels, B. (eds.): Algebraic statistics for computational biology. Cambridge University Press, New York (2005)
Keller, O.: Ganze cremonatransformationen. Monatschr. Math. Phys. 47, 229–306 (1939)
Pinchuk, S.: A counterexample to the strong real Jacobian conjecture. Math. Z. 217(1), 1–4 (1994)
Dahmen, W., Micchelli, C.A.: Convexity of multivariate Bernstein polynomials and box spline surfaces. Studia Sci. Math. Hungar. 23(1-2), 265–287 (1988)
Leroy, R.: Certificats de positivité et minimisation polynomiale dans la base de Bernstein multivariée. PhD thesis, Institut de Recherche Mathématique de Rennes (2008)
Sturmfels, B.: Gröbner bases and convex polytopes. American Mathematical Society, Providence (1996)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Craciun, G., García-Puente, L.D., Sottile, F. (2010). Some Geometrical Aspects of Control Points for Toric Patches. In: Dæhlen, M., Floater, M., Lyche, T., Merrien, JL., Mørken, K., Schumaker, L.L. (eds) Mathematical Methods for Curves and Surfaces. MMCS 2008. Lecture Notes in Computer Science, vol 5862. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11620-9_9
Download citation
DOI: https://doi.org/10.1007/978-3-642-11620-9_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-11619-3
Online ISBN: 978-3-642-11620-9
eBook Packages: Computer ScienceComputer Science (R0)