Fast Classification Scheme for HARDI Data Simplification | SpringerLink
Skip to main content

Fast Classification Scheme for HARDI Data Simplification

  • Conference paper
ICT Innovations 2009 (ICT Innovations 2009)

Included in the following conference series:

Abstract

High angular resolution diffusion imaging (HARDI) is able to capture the water diffusion pattern in areas of complex intravoxel fiber configurations. However, compared to diffusion tensor imaging (DTI), HARDI adds extra complexity (e.g., high post-processing time and memory costs, nonintuitive visualization). Separating the data into Gaussian and non-Gaussian areas can allow to use complex HARDI models just when it is necessary. We study HARDI anisotropy measures as classification criteria applied to different HARDI models. The chosen measures are fast to calculate and provide interactive data classification. We show that increasing b-value and number of diffusion measurements above clinically accepted settings does not significantly improve the classification power of the measures. Moreover, denoising enables better quality classifications even with low b-values and low sampling schemes. We study the measures quantitatively on an ex-vivo crossing phantom, and qualitatively on real data under different acquisition schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 22879
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 28599
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 28599
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Basser, P.J., Mattiello, J., Lebihan, D.: MR diffusion tensor spectroscopy and imaging. Biophys. J. 66(1), 259–267 (1994)

    Article  Google Scholar 

  2. Frank, L.R.: Characterization of anisotropy in high angular resolution diffusion-weighted MRI. Magn. Reson. Med. 47(6), 1083–1099 (2002)

    Article  Google Scholar 

  3. Alexander, D.C., Barker, G.J., Arridge, S.R.: Detection and modeling of non-gaussian apparent diffusion coefficient profiles in human brain data. Magn. Reson. Med. 48(2), 331–340 (2002)

    Article  Google Scholar 

  4. Tuch, D.: Q-ball imaging. Magn. Reson. Med. 52, 1358–1372 (2004)

    Article  Google Scholar 

  5. Özarslan, E., Shepherd, T.M., Vemuri, B.C., Blackband, S.J., Mareci, T.H.: Resolution of complex tissue microarchitecture using the diffusion orientation transform (DOT). NeuroImage 36(3), 1086–1103 (2006)

    Article  Google Scholar 

  6. Jian, B., Vemuri, B.C.: A unified computational framework for deconvolution to reconstruct multiple fibers from Diffusion Weighted MRI. IEEE Transactions on Medical Imaging 26(11), 1464–1471 (2007)

    Article  Google Scholar 

  7. Rao, M., Chen, Y., Vemuri, B.C., Wang, F.: Cumulative residual entropy: A new. measure of information. IEEE Transactions on Information Theory 50(6), 1220–1228 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, Y., Guo, W., Zeng, Q., Yan, X., Rao, M., Liu, Y.: Apparent diffusion coefficient approximation and diffusion anisotropy characterization in DWI. In: Christensen, G.E., Sonka, M. (eds.) IPMI 2005. LNCS, vol. 3565, pp. 246–257. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  9. Descoteaux, M., Angelino, E., Fitzgibbons, S., Deriche, R.: Apparent diffusion coefficients from high angular resolution diffusion imaging: Estimation and applications. Magn. Reson. in Med. 56, 395–410 (2006)

    Article  Google Scholar 

  10. Özarslan, E., Vemuri, B.C., Mareci, T.H.: Generalized scalar measures for diffusion MRI using trace, variance, and entropy. Magn. Reson. Med. 53(4), 866–876 (2005)

    Article  Google Scholar 

  11. Leow, A., Zhu, S., Zhan, L., McMahon, K., de Zubicaray, G., Meredith, M., Wright, M., Thompson, P.: A study of information gain in high angular resolution diffusion imaging (HARDI). In: Computational Diffusion MRI Workshop, MICCAI (2008)

    Google Scholar 

  12. Tournier, J.D., Calamante, F., Connelly, A.: Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution. Neuroimage 35(4), 1459–1472 (2007)

    Article  Google Scholar 

  13. Descoteaux, M., Angelino, E., Fitzgibbons, S., Deriche, R.: Regularized, fast and robust analytical q-ball imaging. Magn. Reson. Med. 58, 497–510 (2007)

    Article  Google Scholar 

  14. Wedeen, V.J., Hagmann, P., Tseng, W.Y., Reese, T.G., Weisskoff, R.M.: Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging. Magn. Reson. Med. 54(6), 1377–1386 (2005)

    Article  Google Scholar 

  15. Poupon, C., Rieul, B., Kezele, I., Perrin, M., Poupon, F., Mangin, J.F.: New diffusion phantoms dedicated to the study and validation of HARDI models. Magn. Reson. in Med. 60, 1276–1283 (2008)

    Article  Google Scholar 

  16. Descoteaux, M., Wiest-Daesslé, N., Prima, S., Barillot, C., Deriche, R.: Impact of Rician Adapted Non-Local Means Filtering on HARDI. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part II. LNCS, vol. 5242, pp. 122–130. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  17. Prčkovska, V., Roebroeck, A.F., Pullens, W., Vilanova, A., ter Haar Romeny, B.M.: Optimal acquisition schemes in high angular resolution diffusion weighted imaging. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part II. LNCS, vol. 5242, pp. 9–17. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  18. Jansons, K.M., Alexander, D.: Persistent angular structure: new insights from diffusion magnetic resonance imaging data. Inverse Problems 19, 1031–1046 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Schnell, S., Saur, D., Kreher, B., Hennig, J., Burkhardt, H., Kiselev, V.: Fully automated classification of HARDI in vivo data using a support vector machine. NeuroImage 46(3), 642–651 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Prčkovska, V., Vilanova, A., Poupon, C., ter Haar Romeny, B.M., Descoteaux, M. (2010). Fast Classification Scheme for HARDI Data Simplification. In: Davcev, D., Gómez, J.M. (eds) ICT Innovations 2009. ICT Innovations 2009. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10781-8_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10781-8_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10780-1

  • Online ISBN: 978-3-642-10781-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics