Abstract
High angular resolution diffusion imaging (HARDI) is able to capture the water diffusion pattern in areas of complex intravoxel fiber configurations. However, compared to diffusion tensor imaging (DTI), HARDI adds extra complexity (e.g., high post-processing time and memory costs, nonintuitive visualization). Separating the data into Gaussian and non-Gaussian areas can allow to use complex HARDI models just when it is necessary. We study HARDI anisotropy measures as classification criteria applied to different HARDI models. The chosen measures are fast to calculate and provide interactive data classification. We show that increasing b-value and number of diffusion measurements above clinically accepted settings does not significantly improve the classification power of the measures. Moreover, denoising enables better quality classifications even with low b-values and low sampling schemes. We study the measures quantitatively on an ex-vivo crossing phantom, and qualitatively on real data under different acquisition schemes.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Basser, P.J., Mattiello, J., Lebihan, D.: MR diffusion tensor spectroscopy and imaging. Biophys. J. 66(1), 259–267 (1994)
Frank, L.R.: Characterization of anisotropy in high angular resolution diffusion-weighted MRI. Magn. Reson. Med. 47(6), 1083–1099 (2002)
Alexander, D.C., Barker, G.J., Arridge, S.R.: Detection and modeling of non-gaussian apparent diffusion coefficient profiles in human brain data. Magn. Reson. Med. 48(2), 331–340 (2002)
Tuch, D.: Q-ball imaging. Magn. Reson. Med. 52, 1358–1372 (2004)
Özarslan, E., Shepherd, T.M., Vemuri, B.C., Blackband, S.J., Mareci, T.H.: Resolution of complex tissue microarchitecture using the diffusion orientation transform (DOT). NeuroImage 36(3), 1086–1103 (2006)
Jian, B., Vemuri, B.C.: A unified computational framework for deconvolution to reconstruct multiple fibers from Diffusion Weighted MRI. IEEE Transactions on Medical Imaging 26(11), 1464–1471 (2007)
Rao, M., Chen, Y., Vemuri, B.C., Wang, F.: Cumulative residual entropy: A new. measure of information. IEEE Transactions on Information Theory 50(6), 1220–1228 (2004)
Chen, Y., Guo, W., Zeng, Q., Yan, X., Rao, M., Liu, Y.: Apparent diffusion coefficient approximation and diffusion anisotropy characterization in DWI. In: Christensen, G.E., Sonka, M. (eds.) IPMI 2005. LNCS, vol. 3565, pp. 246–257. Springer, Heidelberg (2005)
Descoteaux, M., Angelino, E., Fitzgibbons, S., Deriche, R.: Apparent diffusion coefficients from high angular resolution diffusion imaging: Estimation and applications. Magn. Reson. in Med. 56, 395–410 (2006)
Özarslan, E., Vemuri, B.C., Mareci, T.H.: Generalized scalar measures for diffusion MRI using trace, variance, and entropy. Magn. Reson. Med. 53(4), 866–876 (2005)
Leow, A., Zhu, S., Zhan, L., McMahon, K., de Zubicaray, G., Meredith, M., Wright, M., Thompson, P.: A study of information gain in high angular resolution diffusion imaging (HARDI). In: Computational Diffusion MRI Workshop, MICCAI (2008)
Tournier, J.D., Calamante, F., Connelly, A.: Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution. Neuroimage 35(4), 1459–1472 (2007)
Descoteaux, M., Angelino, E., Fitzgibbons, S., Deriche, R.: Regularized, fast and robust analytical q-ball imaging. Magn. Reson. Med. 58, 497–510 (2007)
Wedeen, V.J., Hagmann, P., Tseng, W.Y., Reese, T.G., Weisskoff, R.M.: Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging. Magn. Reson. Med. 54(6), 1377–1386 (2005)
Poupon, C., Rieul, B., Kezele, I., Perrin, M., Poupon, F., Mangin, J.F.: New diffusion phantoms dedicated to the study and validation of HARDI models. Magn. Reson. in Med. 60, 1276–1283 (2008)
Descoteaux, M., Wiest-Daesslé, N., Prima, S., Barillot, C., Deriche, R.: Impact of Rician Adapted Non-Local Means Filtering on HARDI. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part II. LNCS, vol. 5242, pp. 122–130. Springer, Heidelberg (2008)
Prčkovska, V., Roebroeck, A.F., Pullens, W., Vilanova, A., ter Haar Romeny, B.M.: Optimal acquisition schemes in high angular resolution diffusion weighted imaging. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part II. LNCS, vol. 5242, pp. 9–17. Springer, Heidelberg (2008)
Jansons, K.M., Alexander, D.: Persistent angular structure: new insights from diffusion magnetic resonance imaging data. Inverse Problems 19, 1031–1046 (2003)
Schnell, S., Saur, D., Kreher, B., Hennig, J., Burkhardt, H., Kiselev, V.: Fully automated classification of HARDI in vivo data using a support vector machine. NeuroImage 46(3), 642–651 (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Prčkovska, V., Vilanova, A., Poupon, C., ter Haar Romeny, B.M., Descoteaux, M. (2010). Fast Classification Scheme for HARDI Data Simplification. In: Davcev, D., Gómez, J.M. (eds) ICT Innovations 2009. ICT Innovations 2009. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10781-8_36
Download citation
DOI: https://doi.org/10.1007/978-3-642-10781-8_36
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-10780-1
Online ISBN: 978-3-642-10781-8
eBook Packages: EngineeringEngineering (R0)