Vulnerability Assessment of Complex Networks Based on Optimal Flow Measurements under Intentional Node and Edge Attacks | SpringerLink
Skip to main content

Vulnerability Assessment of Complex Networks Based on Optimal Flow Measurements under Intentional Node and Edge Attacks

  • Conference paper
ICT Innovations 2009 (ICT Innovations 2009)

Included in the following conference series:

Abstract

In this paper we assess the vulnerability of different synthetic complex networks by measuring the traffic performance in presence of intentional nodes and edge attacks. We choose which nodes or edges would be attacked by using several centrality measures, such as: degree, eigenvector and betweenness centrality. In order to obtain some information about the vulnerability of the four different complex networks (random, small world, scale-free and random geometric) we analyze the throughput of these networks when the nodes or the edges are attacked using some of the above mentioned strategies. When attack happens, the bandwidth is reallocated among the flows, which affects the traffic utility. One of the obtained results shows that the scale-free network gives the best flow performance and then comes random networks, small world, and the poorest performance is given by the random geometric networks. This changes dramatically after removing some of the nodes (or edges), giving the biggest performance drop to random and scale-free networks and smallest to random geometric and small world networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 22879
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 28599
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 28599
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Erdős, P., Rényi, A.: On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci. 5, 17–61 (1960)

    MathSciNet  MATH  Google Scholar 

  2. Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Penrose, M.: Random Geometric Graphs. Oxford University Press, New York (2004)

    MATH  Google Scholar 

  4. Newman, M.E.J.: The structure and function of complex networks. SIAM Rev. 45, 167–256 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dezso, Z., Barabási, A.-L.: Halting viruses in scale-free networks. Phys. Rev. E 65, 055103 (2002)

    Article  Google Scholar 

  6. Latora, V., Marchiori, M.: How the science of complex networks can help developing strategies against terrorism. Chaos, Solitons and Fractals 20, 69–75 (2004)

    Article  MATH  Google Scholar 

  7. Nekovee, M., et al.: Theory of rumour spreading in complex social networks. Physica A 374, 457–470 (2007)

    Article  Google Scholar 

  8. Kempe, D., Kleinberg, J.M., Tardos, E.: Maximizing the spread of influence through a social network. In: ACM SIGKDD international conference on Knowledge discovery and data mining (2003)

    Google Scholar 

  9. Checco, P., Biey, M., Vattay, G., Kocarev, L.: Complex network topologies and synchronization. In: Proc. ISCAS 2006, Kos, Greece, May 2006, pp. 2641–2644 (2006)

    Google Scholar 

  10. Crucitti, P., Latora, V., Marchiori, M.: Model for cascading failures in complex networks. Phys. Rev. E 69, 045104(R) (2004)

    Google Scholar 

  11. Guimera, R., Diaz-Guilera, A., Vega-Radondo, F., Cabrales, A., Arenas, A.: Optimal network topologies for local search with congestion. Phys. Rev. Lett. 89, 248701–248704 (2002)

    Article  Google Scholar 

  12. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.-U.: Complex networks: Structure and dynamics. Phys. Rep. 424, 175–308 (2006)

    Article  MathSciNet  Google Scholar 

  13. Motter, A.E., Lai, Y.-C.: Cascade-based attacks on complex networks. Phys. Rev. E 66, 065102(R) (2002)

    Google Scholar 

  14. Holme, P., Kim, B.J., Yoon, C.N., Han, S.K.: Attack vulnerability of complex networks. Phys. Rev. E 65, 056109 (2002)

    Article  Google Scholar 

  15. Mirchev, M., Filiposka, S., Trajkovski, N., Trajanov, D.: Network utility maximization in ad hoc networks with different communication patterns. In: ETAI 2009, Ohrid, Macedonia (2009)

    Google Scholar 

  16. Kelly, F.P., Maulloo, A.K., Tan, D.K.H.: Rate control in communication networks: shadow prices, proportional fairness and stability. J. Optical Research Society 49, 237–252 (1998)

    Article  MATH  Google Scholar 

  17. Kunniyur, S., Srikant, R.: End-to-end congestion control schemes: Utility functions, random losses and ECN marks. IEEE/ACM Transactions on networking 11(5), 689–702 (2003)

    Article  Google Scholar 

  18. Freeman, L.: Centrality in social networks: Conceptual clarification. Social Networks 1(3), 215–239 (1979)

    Article  Google Scholar 

  19. Nieminen, J.: On the centrality in a graph. Scandinavian Journal of Psychology 15(1), 332–336 (1974)

    Article  Google Scholar 

  20. Bonacich, P.: Factoring and weighting approaches to status scores and clique identification. Journal of Mathematical Sociology 2(1), 113–120 (1972)

    Article  Google Scholar 

  21. Larry, P., Sergey, B., Motwani, R., et al.: The PageRank citation ranking: Bringing order to the web (1998), http://citeseer.nj.nec.com/page98pagerank.html [04.06. 2003]

  22. Karonski, M., Rucinski, A.: The Origins of the Theory of Random Graphs. The Mathematics of Paul Erdos. Springer, Berlin (1997)

    Book  MATH  Google Scholar 

  23. Amaral, L.A.N., Scala, A., Barthelemy, M., Stanley, H.E.: Classes of small-world networks. PNAS 97, 11149–11152

    Google Scholar 

  24. Barabasi, A.L.: Linked. Penguin Group, London (May 2003)

    Google Scholar 

  25. CVX: Matlab Software for Disciplined Convex Programming, http://www.standofd.edu/~boyd/cvx

  26. Igor, M., Filiposka, S., Gramatikov, S., Trajanov, D., Kocarev, L.: Game Theoretic Approach for Discovering Vulnerable Links in Complex Networks. In: International Joint Conferences on Computer, Information, and System Sciences, and Engineering, University of Bridgeport, USA, December 5-13 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mishkovski, I., Kojchev, R., Trajanov, D., Kocarev, L. (2010). Vulnerability Assessment of Complex Networks Based on Optimal Flow Measurements under Intentional Node and Edge Attacks. In: Davcev, D., Gómez, J.M. (eds) ICT Innovations 2009. ICT Innovations 2009. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10781-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10781-8_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10780-1

  • Online ISBN: 978-3-642-10781-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics