Automated Structural Classification of Proteins by Using Decision Trees and Structural Protein Features | SpringerLink
Skip to main content

Automated Structural Classification of Proteins by Using Decision Trees and Structural Protein Features

  • Conference paper
ICT Innovations 2009 (ICT Innovations 2009)

Abstract

The protein function is tightly related to classification of proteins in hierarchical levels where proteins share same or similar functions. One of the most relevant protein classification schemes is the structural classification of proteins (SCOP). The SCOP scheme has one negative drawback; due to its manual classification methods, the dynamic of classification of new proteins is much slower than the dynamic of discovering novel protein structures in the protein data bank (PDB). In this work, we propose two approaches for automated protein classification. We extract protein descriptors from the structural coordinates stored in the PDB files. Then we apply C4.5 algorithm to select the most appropriate descriptor features for protein classification based on the SCOP hierarchy. We propose novel classification approach by introducing a bottom-up classification flow, and a multi-level classification approach. The results show that these approaches are much faster than other similar algorithms with comparable accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 22879
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 28599
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 28599
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Marsolo, K., Parthasarathy, S., Ding, C.: A Multi-Level Approach to SCOP Fold Recognition. In: IEEE Symposium on Bioinformatics and Bioeng., pp. 57–64 (2005)

    Google Scholar 

  2. Murzin, A.G., Brenner, S.E., Hubbard, T., Chothia, C.: Scop: a structural classification of proteins database for the investigation of sequences and structures. Journal of Molecular Biology 247, 536–540 (1995)

    Google Scholar 

  3. Camoğlu, O., Can, T., Singh, A.K., Wang, Y.F.: Decision tree based information integration for automated protein classification. Journal of Bioinformatics and Computational Biology 3(3), 717–724 (2005)

    Article  Google Scholar 

  4. Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., Bourne, P.E.: The Protein Data Bank. Nucleic Acids Res. 28, 235–242 (2000)

    Article  Google Scholar 

  5. Shindyalov, H.N., Bourne, P.E.: Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. Protein Engineering 9, 739–747 (1998)

    Article  Google Scholar 

  6. Ortiz, A.R., Strauss, C.E., Olmea, O.: Mammoth: An automated method for model comparison. Protein Science 11, 2606–2621 (2002)

    Article  Google Scholar 

  7. Holm, L., Sander, C.: Protein structure comparison by alignment of distance matrices. Journal of Molecular Biology 233, 123–138 (1993)

    Article  Google Scholar 

  8. Cheek, S., Qi, Y., Krishna, S.S., Kinch, L.N., Grishin, N.V.: SCOPmap: Automated assignment of protein structures to evolutionary superfamilies. BMC Bioinformatics 5, 197–221 (2004)

    Article  Google Scholar 

  9. Tung, C.H., Yang, J.M.: FastSCOP: a fast web server for recognizing protein structural domains and SCOP superfamilies. Nucleic Acids Res. 35, W438–W443 (2007)

    Article  Google Scholar 

  10. Holm, L., Sander, C.: Dali: a network tool for protein structure comparison. Trends in Biochemical Science 20, 478–480 (1995)

    Article  Google Scholar 

  11. Sadreyev, R., Grishin, N.: COMPASS: a tool for comparison of multiple protein alignments with assessment of statistical significance. J. Mol. Biol. 326, 317–336 (2003)

    Article  Google Scholar 

  12. Yang, J.M., Tung, C.H.: Protein structure database search and evolutionary classification. Nucleic Acids Research 34, 3646–3659 (2006)

    Article  Google Scholar 

  13. Kalajdziski, S., Mirceva, G., Trivodaliev, K., Davcev, D.: Protein Classification by Matching 3D Structures. In: Frontiers in the Convergence of Bioscience and Information Technologies 2007, Jeju Island, Korea, pp. 147–152 (2007)

    Google Scholar 

  14. Chi, P.H.: Efficient protein tertiary structure retrievals and classifications using content based comparison algorithms. PhD thesis, University of Missouri-Columbia (2007)

    Google Scholar 

  15. Holm, L., Sander, C.: The FSSP Database: Fold Classification Based on Structure-Structure Alignment of Proteins. Nucleic Acids Research 24, 206–210 (1996)

    Article  Google Scholar 

  16. Orengo, C.A., Michie, A.D., Jones, D.T., Swindells, M.B., Thornton, J.M.: CATH - A hierarchic classif. of protein domain structures. Structure 5(8), 1093–1108 (1997)

    Article  Google Scholar 

  17. Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J.: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research 25(17), 3389–3402 (1997)

    Article  Google Scholar 

  18. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic local alignment search tool. Journal of Molecular Biology 215(3), 403–410 (1990)

    Article  Google Scholar 

  19. Needleman, S.B., Wunsch, C.D.: A general method applicable to the search for similarities in the amino acid sequence of two proteins. J. Mol. Bio. 48(3), 443–453 (1970)

    Article  Google Scholar 

  20. Madej, T., Gibrat, J.F., Bryant, S.H.: Threading a database of protein cores. Proteins 23, 356–369 (1995)

    Article  Google Scholar 

  21. Tung, C.H., Huang, J.W., Yang, J.M.: Kappa-alpha plot derived structural alphabet and BLOSUM-like substitution matrix for rapid search of protein structure database. Genome Biology 8(3), 31–46 (2007)

    Article  Google Scholar 

  22. Clare, A.: Machine learning and data mining for yeast functional genomics. PhD thesis, University of Wales Aberystwyth (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kalajdziski, S., Pepik, B., Ivanovska, I., Mirceva, G., Trivodaliev, K., Davcev, D. (2010). Automated Structural Classification of Proteins by Using Decision Trees and Structural Protein Features. In: Davcev, D., Gómez, J.M. (eds) ICT Innovations 2009. ICT Innovations 2009. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10781-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10781-8_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10780-1

  • Online ISBN: 978-3-642-10781-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics