Abstract
For data given by binary object-attribute datatables Formal Concept Analysis (FCA) provides with a means for both convenient computing hierarchies of object classes and dependencies between sets of attributes used for describing objects. In case of data more complex than binary to apply FCA techniques, one needs scaling (binarizing) data. Pattern structures propose a direct way of processing complex data such as strings, graphs, numerical intervals and other. As compared to scaling (binarization), this way is more efficient from the computational point of view and proposes much better vizualization of results. General definition of pattern structures and learning by means of them is given. Two particular cases, namely that of graph pattern structures and interval pattern structures are considered. Applications of these pattern structures in bioinformatics are discussed.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Blinova, V.G., Dobrynin, D.A., Finn, V.K., Kuznetsov, S.O., Pankratova, E.S.: Toxicology analysis by means of the JSM-method. Bioinformatics 19, 1201–1207 (2003)
Chaudron, L., Maille, N.: Generalized Formal Concept Analysis. In: Ganter, B., Mineau, G.W. (eds.) ICCS 2000. LNCS, vol. 1867, pp. 357–370. Springer, Heidelberg (2000)
Férré, S., Ridoux, O.: A Logical Generalization of Formal Concept Analysis. In: Ganter, B., Mineau, G.W. (eds.) ICCS 2000. LNCS, vol. 1867, Springer, Heidelberg (2000)
Finn, V.K.: On Machine-Oriented Formalization of Plausible Reasoning in the Style of F. Backon–J. S. Mill. Semiotika Informatika 20, 35–101 (1983) (in Russian)
Finn, V.K.: Plausible Reasoning in Systems of JSM Type. Itogi Nauki i Tekhniki, Seriya Informatika 15, 54–101 (1991) (in Russian)
Ganter, B., Kuznetsov, S.: Formalizing Hypotheses with Concepts. In: Ganter, B., Mineau, G.W. (eds.) ICCS 2000. LNCS, vol. 1867, pp. 342–356. Springer, Heidelberg (2000)
Ganter, B., Kuznetsov, S.: Pattern Structures and Their Projections. In: Delugach, H.S., Stumme, G. (eds.) ICCS 2001. LNCS (LNAI), vol. 2120, pp. 129–142. Springer, Heidelberg (2001)
Ganter, B., Grigoriev, P.A., Kuznetsov, S.O., Samokhin, M.V.: Concept-based Data Mining with Scaled Labeled Graphs. In: Wolff, K.E., Pfeiffer, H.D., Delugach, H.S. (eds.) ICCS 2004. LNCS (LNAI), vol. 3127, pp. 94–108. Springer, Heidelberg (2004)
Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer, Heidelberg (1999)
Kaytoue, M., Duplessis, S., Kuznetsov, S.O., Napoli, A.: Two FCA-Based Methods for Mining Gene Expression Data. In: Ferre, S., Rudoplh, S. (eds.) ICFCA 2009. LNCS (LNAI), pp. 251–266. Springer, Heidelberg (2009)
Kryszkiewicz, M.: Concise Representations of Association Rules. In: Hand, D.J., Adams, N.M., Bolton, R.J. (eds.) Pattern Detection and Discovery. LNCS (LNAI), vol. 2447, pp. 92–109. Springer, Heidelberg (2002)
Kuznetsov, S.O.: JSM-method as a machine learning method. Itogi Nauki i Tekhniki, ser. Informatika 15, 17–50 (1991)
Kuznetsov, S.O.: Learning of Simple Conceptual Graphs from Positive and Negative Examples. In: Żytkow, J.M., Rauch, J. (eds.) PKDD 1999. LNCS (LNAI), vol. 1704, pp. 384–391. Springer, Heidelberg (1999)
Kuznetsov, S.O., Obiedkov, S.A.: Comparing performance of algorithms for generating concept lattices. J. Exp. Theor. Artif. Intell. 14(2-3), 189–216 (2002)
Kuznetsov, S.O., Samokhin, M.V.: Learning Closed Sets of Labeled Graphs for Chemical Applications. In: Kramer, S., Pfahringer, B. (eds.) ILP 2005. LNCS (LNAI), vol. 3625, pp. 190–208. Springer, Heidelberg (2005)
Liquiere, M., Sallantin, J.: Structural Machine Learning with Galois Lattice and Graphs. In: Proc. Int. Conf. Machine Learning ICML 1998 (1998)
Luxenburger, M.: Implications partielle dans un contexte. Math. Sci. Hum. (1991)
Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Efficient Minining of Association Rules Based on Using Closed Itemset Lattices. J. Inf. Systems 24, 25–46 (1999)
Lakhal, L., Stumme, G.: Efficient mining of association rules based on formal concept analysis. In: Ganter, B., Stumme, G., Wille, R. (eds.) Formal Concept Analysis. LNCS (LNAI), vol. 3626, pp. 180–195. Springer, Heidelberg (2005)
Yan, X., Han, J.: CloseGraph: Mining closed frequent graph patterns. In: Getoor, L., Senator, T., Domingos, P., Faloutsos, C. (eds.) Proc. 9th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining (KDD 2003), pp. 286–295. ACM Press, New York (2003)
Wille, R.: Restructuring Lattice Theory: an Approach Based on Hierarchies of Concepts. In: Rival, I. (ed.) Ordered Sets, pp. 445–470. Reidel, Dordrecht (1982)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kuznetsov, S.O. (2009). Pattern Structures for Analyzing Complex Data. In: Sakai, H., Chakraborty, M.K., Hassanien, A.E., Ślęzak, D., Zhu, W. (eds) Rough Sets, Fuzzy Sets, Data Mining and Granular Computing. RSFDGrC 2009. Lecture Notes in Computer Science(), vol 5908. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10646-0_4
Download citation
DOI: https://doi.org/10.1007/978-3-642-10646-0_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-10645-3
Online ISBN: 978-3-642-10646-0
eBook Packages: Computer ScienceComputer Science (R0)