On the Camera Placement Problem | SpringerLink
Skip to main content

On the Camera Placement Problem

  • Conference paper
Algorithms and Computation (ISAAC 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5878))

Included in the following conference series:

Abstract

We introduce a new probing problem: what is the minimum number of cameras at fixed positions necessary and sufficient to reconstruct any strictly convex polygon contained in a disk of radius 1 if cameras only see the silhouette of the polygon? The optimal number only depends on the largest angle α of the polygon. If no two camera tangents overlap, \(\lceil \frac{3\pi}{\pi-\alpha} \rceil\) cameras are necessary and sufficient. Otherwise, approximately \(\lceil \frac{4\pi}{\pi-\alpha} \rceil\) cameras are sufficient. Reconstruction only takes time linear in the number of cameras. We also give results for the 3D case.

This work was supported by a grant from the National High Technology Research and Development Program of China (863 Program) (No. 2007AA01Z176) and the Shanghai Leading Academic Discipline Project (project number B114). The authors are ordered alphabetically by family name; otherwise, Y. Wang would be first author.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 17159
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 21449
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Boissonnat, J.-D., Yvinec, M.: Probing a scene of non-convex polyhedra. Algorithmica 8, 321–342 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  2. Cole, R., Yap, C.K.: Shape from probing. Journal of Algorithms 8, 19–38 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  3. Conway, J.H., Hardin, R.H., Sloane, J.A.: Packing lines, planes, etc.: packings in Grassmannian spaces. Experimental Mathematics 5 (1996)

    Google Scholar 

  4. Hardin, R.H., Sloane, N.J.A., Smith, W.D.: Spherical coverings (2008), http://www.research.att.com/~njas/coverings/

  5. Joseph, E., Skiena, S.: Model-based probing strategies for convex polygons. Computational Geometry: Theory and Applications 2, 209–221 (1992)

    MATH  MathSciNet  Google Scholar 

  6. Karl, W.C., Verghese, G.C., Willsky, A.S.: Reconstructing ellipsoids from projections. Computer Vision, Graphics, and Image Processing 56(2), 124–139 (1994)

    Google Scholar 

  7. Kayikcioglu, T., Gangal, A., Turhal, M.: Reconstructing coronary arterial segments from three projection boundaries. Pattern Recognition Letters 22(6-7), 611–624 (2001)

    Article  MATH  Google Scholar 

  8. Laurentini, A.: How many 2D silhouettes does it take to reconstruct a 3D object? Computer Vision and Image Understanding 67(1), 81–87 (1997)

    Article  Google Scholar 

  9. Lindenbaum, M., Bruckstein, A.: Reconstructing a convex polygon from binary perspective projections. Pattern Recognition 23(12), 1343–1350 (1990)

    Article  MathSciNet  Google Scholar 

  10. Lindenbaum, M., Bruckstein, A.: Reconstruction of polygonal sets by constrained and unconstrained double probing. Annals of Mathematics and Artificial Intelligence 4(3-4), 345–361 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  11. Meijer, H., Skiena, S.S.: Reconstructing polygons from x-rays. Geometriae Dedicata 61(2), 191–204 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  12. Mount, D.: Geometric intersection. In: Goodman, J.E., O’Rourke, J. (eds.) Handbook of Discrete and Computational Geometry, ch. 38, 2nd edn., pp. 859–879. CRC Press, New York (2004)

    Google Scholar 

  13. Rao, A.S., Goldberg, K.Y.: Shape from diameter: Recognizing polygonal parts with a parallel-jaw gripper. The International Journal of Robotics Research 13(1), 16–37 (1994)

    Article  Google Scholar 

  14. Saff, E.B., Kuijlaars, A.B.J.: Distributing many points on a sphere. The Mathematical Intelligencer 19(1), 5–11 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  15. Sarkar, S., Phillips, P.J., Liu, Z., Vega, I.R., Grother, P., Bowyer, K.W.: The humanid gait challenge problem: Data sets, performance, and analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(2), 162–177 (2005)

    Article  Google Scholar 

  16. Skiena, S.S.: Problems in geometric probing. Algorithmica 4(4), 599–605 (1989)

    Article  MathSciNet  Google Scholar 

  17. Sormann, M., Bauer, J., Zach, C., Klaus, A., Karner, K.: VR modeler: from image sequences to 3D models. In: Proceedings of the 20th Spring Conference on Computer Graphics, pp. 148–156 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fleischer, R., Wang, Y. (2009). On the Camera Placement Problem. In: Dong, Y., Du, DZ., Ibarra, O. (eds) Algorithms and Computation. ISAAC 2009. Lecture Notes in Computer Science, vol 5878. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10631-6_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10631-6_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10630-9

  • Online ISBN: 978-3-642-10631-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics