Reconstructing Numbers from Pairwise Function Values | SpringerLink
Skip to main content

Reconstructing Numbers from Pairwise Function Values

  • Conference paper
Algorithms and Computation (ISAAC 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5878))

Included in the following conference series:

Abstract

The turnpike problem is one of the few “natural” problems that are neither known to be NP-complete nor solvable by efficient algorithms. We seek to study this problem in a more general setting. We consider the generalized problem which tries to resolve set A = {a 1,a 2, ⋯ ,a n } from pairwise function values {f(a i ,a j ) | 1 ≤ i, j ≤ n} for a given bivariate function f. We call this problem the Number Reconstruction problem. Our results include efficient algorithms when f is monotone and non-trivial bounds on the number of solutions when f is the sum. We also generalize previous backtracking and algebraic algorithms for the turnpike problem such that they work for the family of anti-monotone functions and linear-decomposable functions. Finally, we propose an efficient algorithm for the string reconstruction problem, which is related to an approach to protein reconstruction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abrams, Z., Chen, H.L.: The Simplified Partial Digest Problem: Hardness and a Probabilistic Analysis. In: RECOMB Satellite Meeting on DNA Sequencing Technologies and Computation (2004)

    Google Scholar 

  2. Blazewicz, J., Formanowicz, P., Kasprzak, M., Jaroszewski, M., Markiewicz, W.T.: Construction of DNA restriction maps based on a simplified experiment (2001)

    Google Scholar 

  3. Cieliebak, M., Eidenbenz, S.: Measurement errors make the partial digest problem NP-hard. In: Farach-Colton, M. (ed.) LATIN 2004. LNCS, vol. 2976, pp. 379–390. Springer, Heidelberg (2004)

    Google Scholar 

  4. Cieliebak, M., Eidenbenz, S., Penna, P.: Noisy data make the partial digest problem NP-hard. In: Benson, G., Page, R.D.M. (eds.) WABI 2003. LNCS (LNBI), vol. 2812, pp. 111–123. Springer, Heidelberg (2003)

    Google Scholar 

  5. Dakic, T.: On the turnpike problem. PhD thesis, Simon Fraser University (2000)

    Google Scholar 

  6. Das, H., Orlitsky, A., Santhanam, N.: Order from disorder. In: Information Theory and Applications Workshop (2009)

    Google Scholar 

  7. Goldstein, L., Waterman, M.S.: Mapping DNA by stochastic relaxation. Advances in Applied Mathematics 8(2), 194–207 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  8. Lemke, P., Skiena, S.S., Smith, W.D.: Reconstructing sets from interpoint distances. Discrete and computational geometry: The Goodman-Pollack Festschrift 25, 597–631

    Google Scholar 

  9. O’Bryant, K., Weisstein, E.: Lehmer’s Mahler measure problem. MathWorld–A Wolfram Web Resource

    Google Scholar 

  10. Pandurangan, G., Ramesh, H.: The restriction mapping problem revisited. Journal of Computer and System Sciences 65(3), 526–544 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. Patterson, A.L.: A direct method for the determination of the components of interatomic distances in crystals. Zeitschr. Krist. 90, 517–542 (1935)

    MATH  Google Scholar 

  12. Patterson, A.L.: Ambiguities in the X-ray analysis of crystal structures. Phys. Review 65, 195–201 (1944)

    Article  Google Scholar 

  13. Piccard, S.: Sur les Ensembles de Distances des Ensembles de Point d’un Espace Euclidean. Mem. Univ. Neuchatel 13 (1939)

    Google Scholar 

  14. Rosenblatt, J., Seymour, P.D.: The structure of homometric sets. SIAM Journal on Algebraic and Discrete Methods 3, 343 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  15. Shamos, M.I.: Problems in computational geometry. Unpublished manuscript, Carnegie Mellon University, Pittsburgh, PA (1977)

    Google Scholar 

  16. Skiena, S.S., Sundaram, G.: A partial digest approach to restriction site mapping. Bulletin of Mathematical Biology 56(2), 275–294 (1994)

    MATH  Google Scholar 

  17. Smyth, C.J.: On the product of the conjugates outside the unit circle of an algebraic integer. Bulletin of the London Mathematical Society 3(2), 169 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  18. Smyth, C.J.: The Mahler measure of algebraic numbers: a survey. Number Theory and Polynomials, 322 (2008)

    Google Scholar 

  19. Zhang, Z.: An exponential example for a partial digest mapping algorithm. Journal of Computational Biology 1(3), 235–239 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chen, S., Huang, Z., Kannan, S. (2009). Reconstructing Numbers from Pairwise Function Values. In: Dong, Y., Du, DZ., Ibarra, O. (eds) Algorithms and Computation. ISAAC 2009. Lecture Notes in Computer Science, vol 5878. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10631-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10631-6_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10630-9

  • Online ISBN: 978-3-642-10631-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics