Data Vases: 2D and 3D Plots for Visualizing Multiple Time Series | SpringerLink
Skip to main content

Data Vases: 2D and 3D Plots for Visualizing Multiple Time Series

  • Conference paper
Advances in Visual Computing (ISVC 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5876))

Included in the following conference series:

Abstract

One challenge associated with the visualization of time-dep- endent data is to develop graphical representations that are effective for exploring multiple time-varying quantities. Many existing solutions are limited either because they are primarily applicable for visualizing non-negative values or because they sacrifice the display of overall trends in favor of value-based comparisons. We present a two-dimensional representation we call Data Vases that yields a compact pictorial display of a large number of numeric values varying over time. Our method is based on an intuitive and flexible but less widely-used display technique called a “kite diagram.” We show how our interactive two-dimensional method, while not limited to time-dependent problems, effectively uses shape and color for investigating temporal data. In addition, we extended our method to three dimensions for visualizing time-dependent data on cartographic maps.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Müller, W., Schumann, H.: Visualization methods for time-dependent data - an overview. In: Chick, S., Sanchez, P., Ferrin, D., Morrice, D. (eds.) Proc. of Winter Simulation 2003 (2003)

    Google Scholar 

  2. Aigner, W., Bertone, A., Miksch, S., Tominski, C., Schumann, H.: Towards a conceptual framework for visual analytics of time and time-oriented data. In: WSC 2007: Proceedings of the 39th conference on Winter simulation, Piscataway, NJ, USA, pp. 721–729. IEEE Press, Los Alamitos (2007)

    Google Scholar 

  3. Roddick, J.F., Spiliopoulou, M.: A bibliography of temporal, spatial and spatio-temporal data mining research. SIGKDD Explor. Newsl. 1, 34–38 (1999)

    Article  Google Scholar 

  4. Aigner, W., Miksch, S., Müller, W., Schumann, H., Tominski, C.: Visual methods for analyzing time-oriented data. IEEE TVCG 14, 47–60 (2008)

    Google Scholar 

  5. Hochheiser, H., Shneiderman, B.: Dynamic query tools for time series data sets: timebox widgets for interactive exploration. Info. Vis. 3, 1–18 (2004)

    Article  Google Scholar 

  6. Berry, L., Munzner, T.: Binx: Dynamic exploration of time series datasets across aggregation levels. In: IEEE InfoVIS, Washington, DC, USA. IEEE Computer Society, Los Alamitos (2004)

    Google Scholar 

  7. Peng, R.: A method for visualizing multivariate time series data. Journal of Statistical Software, Code Snippets 25, 1–17 (2008)

    Google Scholar 

  8. Hao, M.C., Dayal, U., Keim, D.A., Schreck, T.: Multi-resolution techniques for visual exploration of large time-series data. In: EuroVis 2007, pp. 27–34 (2007)

    Google Scholar 

  9. Havre, S., Hetzler, B., Nowell, L.: Themeriver (tm). In search of trends, patterns, and relationships (1999)

    Google Scholar 

  10. Heer, J., Kong, N., Agrawala, M.: Sizing the horizon: The effects of chart size and layering on the graphical perception of time series visualizations. In: CHI 2009, Boston, MA, USA (2009)

    Google Scholar 

  11. Emery, D., Myers, K. (eds.): Sequence Stratigraphy. Blackwell Publishing, Malden (1996)

    Google Scholar 

  12. Sheppard, C.R.C.: Species and community changes along environmental and pollution gradients. Marine Pollution Bulletin 30, 504–514 (1995)

    Article  Google Scholar 

  13. Kraak, M.: The space-time cube revisited from a geovisualization perspective. In: Proc. 21st Intl. Cartographic Conf., pp. 1988–1995 (2003)

    Google Scholar 

  14. Eccles, R., Kapler, T., Harper, R., Wright, W.: Stories in geotime. In: VAST 2007. Visual Analytics Science and Technology, pp. 19–26 (2007)

    Google Scholar 

  15. Tominski, C., Schulze-Wollgast, P., Schumann, H.: 3d information visualization for time dependent data on maps. In: IV 2005: Proceedings of the 9th Intl. Conf. on Info. Vis., Washington, DC, USA, pp. 175–181. IEEE Computer Society, Los Alamitos (2005)

    Google Scholar 

  16. Dwyer, T., Eades, P.: Visualising a fund manager flow graph with columns and worms. International Conference on Information Visualisation, 147 (2002)

    Google Scholar 

  17. Elmqvist, N., Tsigas, P.: A taxonomy of 3d occlusion management for visualization. IEEE Transactions on Visualization and Computer Graphics 14, 1095–1109 (2008)

    Article  Google Scholar 

  18. Luo, Z.X.: Transformation and diversification in early mammal evolution. Nature 450, 1011–1019 (2007)

    Article  Google Scholar 

  19. Tufte, E.R.: The visual display of quantitative information. Graphics Press, Cheshire (1986)

    Google Scholar 

  20. Ware, C.: Information Visualization: Perception for Design. Morgan Kaufmann Publishers Inc., San Francisco (2004)

    Google Scholar 

  21. Healey, C.G., Booth, K.S., Enns, J.T.: Visualizing real-time multivariate data using preattentive processing. ACM Trans. Model. Comput. Simul. 5, 190–221 (1995)

    Article  Google Scholar 

  22. Tominski, C., Fuchs, G., Schumann, H.: Task-driven color coding. In: Intl. Conf. Info. Vis., Washington, DC, USA, pp. 373–380. IEEE Computer Society, Los Alamitos (2008)

    Google Scholar 

  23. Shneiderman, B.: Dynamic queries for visual information seeking. IEEE Software 11, 70–77 (1994)

    Article  Google Scholar 

  24. Andrienko, N., Andrienko, G.: Exploratory Analysis of Spatial and Temporal Data: A Systematic Approach. Springer, Heidelberg (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Thakur, S., Rhyne, TM. (2009). Data Vases: 2D and 3D Plots for Visualizing Multiple Time Series. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2009. Lecture Notes in Computer Science, vol 5876. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10520-3_89

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10520-3_89

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10519-7

  • Online ISBN: 978-3-642-10520-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics