Abstract
Temporal periodicity of patterns can be regarded as an important criterion for measuring the interestingness of frequent patterns in several applications. A frequent pattern can be said periodic-frequent if it appears at a regular interval. In this paper, we introduce the problem of mining the top-k periodic frequent patterns i.e. the periodic patterns with the k highest support. An efficient single-pass algorithm using a best-first search strategy without support threshold, called MTKPP (Mining Top-K Periodic-frequent Patterns), is proposed. Our experiments show that our proposal is efficient.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agrawal, R., Imielinski, T., Swami, A.N.: Mining association rules between sets of items in large databases. In: Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data, Washington, D.C., May 26-28, pp. 207–216 (1993)
Brin, S., Motwani, R., Silverstein, C.: Beyond market baskets: generalizing association rules to correlations. In: ACM SIGMOD/PODS, pp. 265–276 (1997)
Agrawal, R., Srikant, R.: Mining sequential patterns. In: International Conference on Data Engineering, pp. 3–14. IEEE Computer Society, Los Alamitos (1995)
Engler, J.: Mining periodic patterns in manufacturing test data. In: International Conference IEEE SoutheastCon., pp. 389–395 (2008)
Hu, T., Sung, S.Y., Xiong, H., Fu, Q.: Discovery of maximum length frequent itemsets. Inf. Sci. 178(1), 69–87 (2008)
Tatavarty, G., Bhatnagar, R., Young, B.: Discovery of temporal dependencies between frequent patterns in multivariate time series. In: Proceedings of the IEEE Symposium on Computational Intelligence and Data Mining, CIDM 2007, part of the IEEE Symposium Series on Computational Intelligence 2007, Honolulu, Hawaii, USA, April 1-5, pp. 688–696. IEEE, Los Alamitos (2007)
Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In: VLDB 1994, Proceedings of 20th International Conference on Very Large Data Bases, Santiago de Chile, Chile, September 12-15, pp. 487–499 (1994)
Han, J., Pei, J., Yin, Y., Mao, R.: Mining frequent patterns without candidate generation: A frequent-pattern tree approach. Data Min. Knowl. Discov. 8(1), 53–87 (2004)
Grahne, G., Zhu, J.: Fast algorithms for frequent itemset mining using fp-trees. IEEE Transactions on Knowledge and Data Engineering 17(10), 1347–1362 (2005)
Zaki, M.J., Gouda, K.: Fast vertical mining using diffsets. In: Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Washington, DC, USA, August 24-27, pp. 326–335 (2003)
Bonchi, F., Lucchese, C.: Pushing tougher constraints in frequent pattern mining. In: Ho, T.-B., Cheung, D., Liu, H. (eds.) PAKDD 2005. LNCS (LNAI), vol. 3518, pp. 114–124. Springer, Heidelberg (2005)
Pei, J., Han, J., Lakshmanan, L.V.S.: Mining frequent item sets with convertible constraints. In: Proceedings of the 17th International Conference on Data Engineering, Heidelberg, Germany, April 2-6, pp. 433–442 (2001)
Goethals, B.: Frequent set mining. In: The Data Mining and Knowledge Discovery Handbook, pp. 377–397. Springer, Heidelberg (2005)
Han, J., Cheng, H., Xin, D., Yan, X.: Frequent pattern mining: current status and future directions. Data Min. Knowl. Discov. 15(1), 55–86 (2007)
Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Discovering frequent closed itemsets for association rules. In: Beeri, C., Bruneman, P. (eds.) ICDT 1999. LNCS, vol. 1540, pp. 398–416. Springer, Heidelberg (1999)
Pei, J., Han, J., Mao, R.: Closet: An efficient algorithm for mining frequent closed itemsets. In: ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery, pp. 21–30 (2000)
Yahia, S.B., Hamrouni, T., Nguifo, E.M.: Frequent closed itemset base algorithms: a thorough structural and analytical survey. SIGKDD Explorations 8(1), 93–104 (2006)
Hilderman, R.J., Hamilton, H.J.: Applying objective interestingness measures in data mining systems. In: Zighed, D.A., Komorowski, J., Żytkow, J.M. (eds.) PKDD 2000. LNCS (LNAI), vol. 1910, pp. 432–439. Springer, Heidelberg (2000)
Geng, L., Hamilton, H.J.: Interestingness measures for data mining: A survey. ACM Comput. Surv. 38(3), 9 (2006)
Lenca, P., Meyer, P., Vaillant, B., Lallich, S.: On selecting interestingness measures for association rules: User oriented description and multiple criteria decision aid. European Journal of Operational Research 184(2), 610–626 (2008)
Suzuki, E.: Pitfalls for categorizations of objective interestingness measures for rule discovery. In: Statistical Implicative Analysis, Theory and Applications, vol. 127, pp. 383–395. Springer, Heidelberg (2008)
Li, J.: On optimal rule discovery. IEEE Transactions on Knowledge and Data Engineering 18(4), 460–471 (2006)
Le Bras, Y., Lenca, P., Lallich, S.: On optimal rule mining: A framework and a necessary and sufficient condition of antimonotonicity. In: Theeramunkong, T., Kijsirikul, B., Cercone, N., Ho, T.-B. (eds.) PAKDD 2009. LNCS, vol. 5476, pp. 705–712. Springer, Heidelberg (2009)
Cohen, E., Datar, M., Fujiwara, S., Gionis, A., Indyk, P., Motwani, R., Ullman, J.D., Yang, C.: Finding interesting associations without support pruning. IEEE Transactions on Knowledge and Data Engineering 13(1), 64–78 (2001)
Bhattacharyya, R., Bhattacharyya, B.: High confidence association mining without support pruning. In: Ghosh, A., De, R.K., Pal, S.K. (eds.) PReMI 2007. LNCS, vol. 4815, pp. 332–340. Springer, Heidelberg (2007)
Le Bras, Y., Lenca, P., Lallich, S.: Mining interesting rules without support requirement: A general universal existential upward closure property. Information Systems (2010)
Li, J., Zhang, X., Dong, G., Ramamohanarao, K., Sun, Q.: Efficient mining of high confidience association rules without support thresholds. In: Żytkow, J.M., Rauch, J. (eds.) PKDD 1999. LNCS (LNAI), vol. 1704, pp. 406–411. Springer, Heidelberg (1999)
Koh, Y.S.: Mining non-coincidental rules without a user defined support threshold. In: Washio, T., Suzuki, E., Ting, K.M., Inokuchi, A. (eds.) PAKDD 2008. LNCS (LNAI), vol. 5012, pp. 910–915. Springer, Heidelberg (2008)
Cheung, Y.L., Fu, A.W.C.: Mining frequent itemsets without support threshold: With and without item constraints. IEEE Transactions on Knowledge and Data Engineering 16(9), 1052–1069 (2004)
Tanbeer, S.K., Ahmed, C.F., Jeong, B.S., Lee, Y.K.: Discovering periodic-frequent patterns in transactional databases. In: Theeramunkong, T., Kijsirikul, B., Cercone, N., Ho, T.-B. (eds.) PAKDD 2009. LNCS, vol. 5476, pp. 242–253. Springer, Heidelberg (2009)
Laxman, S., Sastry, P.: A survey of temporal data mining. In: Sādhanā, Part 2, vol. 31, pp. 173–198 (2006)
Asuncion, A., Newman, D.: UCI machine learning repository (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Amphawan, K., Lenca, P., Surarerks, A. (2009). Mining Top-K Periodic-Frequent Pattern from Transactional Databases without Support Threshold. In: Papasratorn, B., Chutimaskul, W., Porkaew, K., Vanijja, V. (eds) Advances in Information Technology. IAIT 2009. Communications in Computer and Information Science, vol 55. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10392-6_3
Download citation
DOI: https://doi.org/10.1007/978-3-642-10392-6_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-10391-9
Online ISBN: 978-3-642-10392-6
eBook Packages: Computer ScienceComputer Science (R0)