Query Reformulation Based on Relevance Feedback | SpringerLink
Skip to main content

Query Reformulation Based on Relevance Feedback

  • Conference paper
Flexible Query Answering Systems (FQAS 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5822))

Included in the following conference series:

Abstract

In a Relevance Feedback process, the query can be reformulated basing on a matrix product of the RSV (Retrieval Status Value) vector and the documents-terms matrix. In such case, the challenge is to determine the most appropriate query that fulfils the retrieval process. In this paper, we present an automatic query reformulation approach based on a dual form of this product matrix which systematically generate as solution the reformulated query. This approach was spread to assure a learning strategy in order to rank the results of an information retrieval system. Some experiments have been undertaken into a dataset provided by TREC and the results show the effectiveness of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Buckley, S.-G., Allan, C.J.: Automatic retrieval with locality information using smart. In: The First Text REtrieval Conference (TREC-1), pp. 59–72. National Institute of Standards and Technology, Gaithersburg (1992)

    Google Scholar 

  2. Campos, L.M.D., Huete, J.F., Fernndez-Luna, J.M., Spain, J.: Document instantiation for relevance feedback in the bayesian network retrieval model (2001)

    Google Scholar 

  3. Efthimiadis, E.: Interactive query expansion: a user based evaluation in relevance feedback environment. Journal of the American Society for Information Science 51(11), 989–1003 (2000)

    Article  Google Scholar 

  4. Efthimiadis, N.E.: Query expansion. In Annual Review of Information Systems and Technology 31, 121–187 (1996)

    Google Scholar 

  5. Salton, G.: The SMART Retrieval System – Experiments in Automatic Document Processing. Prentice Hall, Englewood Cliffs (1971)

    Google Scholar 

  6. Salton, G., McGill, M.: Introduction to Modern Information Retrieval. McGraw-Hill, New York (1984)

    Google Scholar 

  7. Rocchio, J.J.: Relevance feedback in information retrieval. In: The SMART Retrieval System – Experiments in Automatic Document Processing [5], pp. 313–323

    Google Scholar 

  8. Robertson, S., Sparck-Jones, J.K.: Relevance weighting of search terms. Journal of the American Siciety for Information Science 27(3), 129–146 (1976)

    Article  Google Scholar 

  9. Ruthven, I., Lalmas, M.: A survey on the use of relevance feedback for information access systems. Knowl. Eng. Rev. 18(2), 95–145 (2003)

    Article  Google Scholar 

  10. Johnson, S.C.: Hierarchical clustering schemes, vol. 32, pp. 241–254 (1967)

    Google Scholar 

  11. van Rijsbergen, C.J.: Information Retrieval, 2nd edn. Butterworths, London (1979)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Taktak, I., Tmar, M., Hamadou, A.B. (2009). Query Reformulation Based on Relevance Feedback. In: Andreasen, T., Yager, R.R., Bulskov, H., Christiansen, H., Larsen, H.L. (eds) Flexible Query Answering Systems. FQAS 2009. Lecture Notes in Computer Science(), vol 5822. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04957-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04957-6_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04956-9

  • Online ISBN: 978-3-642-04957-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics