Machine Tuning of Stable Analytical Fuzzy Predictive Controllers | SpringerLink
Skip to main content

Machine Tuning of Stable Analytical Fuzzy Predictive Controllers

  • Conference paper
Adaptive and Natural Computing Algorithms (ICANNGA 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5495))

Included in the following conference series:

  • 2115 Accesses

Abstract

Analytical fuzzy predictive controllers are composed of a few local controllers grouped in the fuzzy Takagi–Sugeno model. Usually, they are designed using the PDC method. Stability of the resulting system (controller + control plant) may be checked using variants of Lyapunov stability criterion. One of the first such variants was the criterion developed by Tanaka and Sugeno. It is rather conservative criterion because, in its basic form, it does not take into consideration the shape of the membership functions. However, this drawback can be exploited in the proposed approach. After finding the Lyapunov matrix for the system with the analytical fuzzy predictive controller, using e.g. LMIs, it is possible to change the membership functions of the controller without sacrificing stability. It is done using the heuristic method. Thus, practically any shape of membership functions may be assumed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Blevins, T.L., McMillan, G.K., Wojsznis, W.K., Brown, M.W.: Advanced Control Unleashed. ISA (2003)

    Google Scholar 

  2. Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, Heidelberg (1999)

    Book  MATH  Google Scholar 

  3. Chadli, M., Maquin, D., Ragot, J.: Relaxed stability conditions for Takagi–Sugeno fuzzy models. In: Proc. Systems, Man an Cybernetics – 2000, USA, pp. 3514–3519 (2000)

    Google Scholar 

  4. Cutler, C.R., Ramaker, B.L.: Dynamic Matrix Control – a computer control algorithm. In: Proc. Joint Automatic Control Conference, San Francisco, CA, USA (1979)

    Google Scholar 

  5. Guerra, T.M., Vermeiren, L.: LMI–based relaxed non–quadratic stabilization conditions for nonlinear systems in Takagi–Sugeno’s form. Automatica 40, 823–829 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Kruszewski, A., Guerra, T.M.: New Approaches for the Stabilization of Discrete Takagi-Sugeno Fuzzy Models. In: Proc. IEEE CDC/ECC, Seville, Spain (2005)

    Google Scholar 

  7. Lam, H.K., Leung, F.H.F.: Stability analysis of discrete–time fuzzy–model–based control systems with time delay: Time delay–independent approach. Fuzzy Sets and Systems 159, 990–1000 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Maciejowski, J.M.: Predictive control with constraints. Prentice Hall, Harlow (2002)

    MATH  Google Scholar 

  9. Marusak, P., Tatjewski, P.: Fuzzy Dynamic Matrix Control algorithms for nonlinear plants. In: Proc. 6th International Conference on Methods and Models in Automation and Robotics, Miedzyzdroje, Poland, pp. 749–754 (2000)

    Google Scholar 

  10. Marusak, P., Tatjewski, P.: Stability analysis of nonlinear control systems with fuzzy DMC controllers. In: Proc. IFAC Workshop on Advanced Fuzzy and Neural Control AFNC 2001, Valencia, Spain, pp. 21–26 (2001)

    Google Scholar 

  11. Marusak, P., Tatjewski, P.: Stability analysis of nonlinear control systems with unconstrained fuzzy predictive controllers. Archives of Control Sciences 12, 267–288 (2002)

    MathSciNet  MATH  Google Scholar 

  12. Rossiter, J.A.: Model-Based Predictive Control. CRC Press, Boca Raton (2003)

    Google Scholar 

  13. Sonbol, A., Fadali, M.S.: Stability analysis of discrete TSK type II/III systems. IEEE Trans. Fuzzy Systems 14, 640–653 (2006)

    Article  Google Scholar 

  14. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its application to modeling and control. IEEE Trans. Systems, Man and Cybernetics 15, 116–132 (1985)

    Article  MATH  Google Scholar 

  15. Tanaka, K., Ikeda, T., Wang, H.O.: Fuzzy regulators and fuzzy observers: relaxed stability conditions and LMI–based designs. IEEE Trans. Fuzzy Systems 6, 250–265 (1998)

    Article  Google Scholar 

  16. Tanaka, K., Sugeno, M.: Stability analysis and design of fuzzy control systems. Fuzzy Sets and Systems 45, 135–156 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  17. Tatjewski, P.: Advanced Control of Industrial Processes; Structures and Algorithms. Springer, London (2007)

    MATH  Google Scholar 

  18. Zhao, J., Wertz, V., Gorez, R.: Design a stabilizing fuzzy and/or non–fuzzy state–feedback controller using LMI method. In: Proc. 3rd European Control Conference, Italy, pp. 1201–1206 (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Marusak, P.M. (2009). Machine Tuning of Stable Analytical Fuzzy Predictive Controllers. In: Kolehmainen, M., Toivanen, P., Beliczynski, B. (eds) Adaptive and Natural Computing Algorithms. ICANNGA 2009. Lecture Notes in Computer Science, vol 5495. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04921-7_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04921-7_44

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04920-0

  • Online ISBN: 978-3-642-04921-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics