Web Image Retrieval for Abstract Queries Using Text and Image Information | SpringerLink
Skip to main content

Web Image Retrieval for Abstract Queries Using Text and Image Information

  • Conference paper
Information Retrieval Technology (AIRS 2009)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 5839))

Included in the following conference series:

  • 880 Accesses

Abstract

In this paper, we propose a method for image retrieval on the web. In this task, we focus on abstract words that do not directly link to images that we want. For example, a user might use a query “summer” to retrieve images of “fireworks” or “a white sand beach with the sea”. In this case retrieval systems need to infer direct words for the images from the abstract query of the user. In our method, we extract related words about a query from the web first. Second, we retrieve images from the web by using the extracted words. Then, a user selects relevant images from the retrieved images. Next, the system computes a similarity between selected images and other images and ranks the images on the basis of the similarity. We use the Earth Mover’s Distance as the similarity. The experimental result shows the effectiveness of our method that uses text and image information for the image retrieval process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kato, M., Ohshima, H., Oyama, S., Tanaka, K.: “likely” image search: Web image search using term sets representing typical features extracted from social tagging information. In: Proceedings of Data Engineering Workshop (DEWS 2008), IEICE (2008)

    Google Scholar 

  2. Freng, Y., Lapata, M.: Automatic image annotation using auxiliary text information. In: Proceedings of ACL 2008: HLT, Columbus, Ohio, June 2008, pp. 272–280. Association for Computational Linguistics (2008)

    Google Scholar 

  3. Gudivada, V., Raghavan, V.: Content-based image retrieval-systems. IEEE Comput. 28(9), 18–22 (1995)

    Article  Google Scholar 

  4. Kushima, K., Akama, H., Konya, S., Yamamuro, M.: Content based image retrieval techniques based on image features. Transactions of Information Processing Society of Japan 40(SIG3(TOD1), 171–184 (1999)

    Google Scholar 

  5. Sezaki, N., Kise, K.: Tagging system using co-occurrence of tags and similar images. In: Proceedings of Data Engineering Workshop (DEWS 2008). IEICE (2008)

    Google Scholar 

  6. Barthel, K.U., Richter, S., Goyal, A., Fllmann, A.: Improved image retrieval using visual sorting and semi-automatic semantic categorization of images. In: MMIU 2008, VISIGRAPP 2008 (2008)

    Google Scholar 

  7. Rui, Y., Huang, T.S., Mehrotra, S.: Relevance feedback techniques in interactive content-based image retrieval. In: Proceedings of Storage and Retrieval of Image and Video Databases VI (SPIE), pp. 25–36 (1998)

    Google Scholar 

  8. Rubner, Y., Tomasi, C., Guibas, L.: The earth mover’s distance as a metric for image retrieval. International Journal of Computer Vision 40(2), 99–121 (2000)

    Article  MATH  Google Scholar 

  9. Ikehara, S., Miyazaki, M., Shirai, S., Yokoo, A., Nakaiwa, H., Ogura, K., Ooyama, Y., Hayashi, Y. (eds.): Goi-Taikei. A Japanese Lexicon. Iwanami Shoten (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shimada, K., Ishikawa, S., Endo, T. (2009). Web Image Retrieval for Abstract Queries Using Text and Image Information. In: Lee, G.G., et al. Information Retrieval Technology. AIRS 2009. Lecture Notes in Computer Science, vol 5839. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04769-5_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04769-5_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04768-8

  • Online ISBN: 978-3-642-04769-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics