Abstract
This papers tests the relevance of interest points to predict eye movements of subjects when viewing video sequences freely. Moreover the papers compares the eye positions of subjects with interest maps obtained using two classical interest point detectors: one spatial and one space-time. We fund that in function of the video sequence, and more especially in function of the motion inside the sequence, the spatial or the space-time interest point detector is more or less relevant to predict eye movements.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Harris, C., Stephens, M.J.: A combined corner and edge detector. In: Alvey Vision Conference (1988)
Lindeberg, T.: Feature detection with automatic scale selection. International Journal of Computer Vision, 77–116 (1998)
Mikolajczyk, K., Schmid, C.: Scale and affine invariant interest point detectors. International Journal of Computer Vision, 63–86 (2004)
Lowe, D.G.: Object recognition from local scale-invariant features. In: International Conference on Computer Vision, pp. 1150–1157 (1999)
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 91–110 (2004)
Mikolajczyk, K., Schmid, C.: Indexing based on scale invariant interest points. In: Proc. ICCV, vol. 1, pp. 525–531 (2001)
Tuytelaars, T., Van Gool, L.: Wide baseline stereo matching based on local, affinely invariant regions. In: British Machine Vision Conference, pp. 412–425 (2000)
Laptev, I.: On space-time interest points. International Journal of Computer Vision 64(2/3), 107–123 (2005)
Dollar, P., Rabaud, V., Cottrell, G., Belongie, S.J.: Behavior recognition via sparse spatio-temporal features. In: International Workshop on Performance Evaluation of Tracking and Surveillance, pp. 65–72 (2001)
Scovanner, S., Ali, P., Shah, M.: A 3-dimensional sift descriptor and its application to action recognition. ACM Multimedia (2007)
Itti, L., Koch, C., Niebur, E.: A model of salincy-based visual attention for rapid scene analysis. IEEE Transaction on Pattern Analysis and Machine Intelligence 20, 1254–1259 (1998)
Tatler, B.W., Baddeley, R.J., Gilchrist, I.D.: Visual correlates of fixation selection: effects of scale and time. Vision Research 45, 643–659 (2005)
Torralba, A., Oliva, A., Castelhano, M.S., Henderson, J.M.: Contextual guidance of eye movements and attention in real-world scenes: The role of global features on object search. Psychological Review 113(4), 766–786 (2006)
Schmid, C., Mohr, R., Bauckhage, C.: Evaluation of interest point detectors. International Journal of Computer Vision 37(2), 151–172 (2000)
Laptev, I., Lindeberg, T.: Space-time interest points. In: ICCV 2003, pp. 432–439 (2003)
Le Meur, O., Le Callet, P., Barba, D.: Predicting visual fixations on video based on low-level visual features. Vision Research 47, 2483–2498 (2007)
Marat, S., Ho Phuoc, T., Granjon, L., Guyader, N., Pellerin, D., Guérin-Dugué, A.: Modelling spatio-temporal saliency to predict gaze direction for short videos. International Journal of Computer Vision 82(3), 231–243 (2009)
Carmi, R., Itti, L.: Visual causes versus correlates of attentional selection in dynamic scenes. Vision Research 46, 4333–4345 (2006)
Peters, R.J., Iyer, A., Itti, L., Koch, C.: Components of bottom up gaze allocation in natural images. Vision Research 45, 2397–2416 (2005)
Peters, R.J., Itti, L.: Applying computational tools to predict gaze direction in interactive visual environments. ACM Trans. On Applied Perception 5(2) (2008)
Cerf, M., Harel, J., Einhauser, W., Koch, C.: Predicting gaze using low-level saliency combined with face detection. In: Neural Information Processing System (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Simac-Lejeune, A., Marat, S., Pellerin, D., Lambert, P., Rombaut, M., Guyader, N. (2009). Relevance of Interest Points for Eye Position Prediction on Videos. In: Fritz, M., Schiele, B., Piater, J.H. (eds) Computer Vision Systems. ICVS 2009. Lecture Notes in Computer Science, vol 5815. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04667-4_33
Download citation
DOI: https://doi.org/10.1007/978-3-642-04667-4_33
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-04666-7
Online ISBN: 978-3-642-04667-4
eBook Packages: Computer ScienceComputer Science (R0)