Optimization of Modular Neural Networks with Interval Type-2 Fuzzy Logic Integration Using an Evolutionary Method with Application to Multimodal Biometry | SpringerLink
Skip to main content

Optimization of Modular Neural Networks with Interval Type-2 Fuzzy Logic Integration Using an Evolutionary Method with Application to Multimodal Biometry

  • Chapter
Bio-inspired Hybrid Intelligent Systems for Image Analysis and Pattern Recognition

Part of the book series: Studies in Computational Intelligence ((SCI,volume 256))

Abstract

In this paper we describe a new evolutionary method to perform the optimization of a modular neural network applied to the case of multimodal biometry. Integration of responses in the modular neural network is performed using type-1 and type-2 fuzzy inference systems.

The proposed evolutionary method produces the best architecture of the modular neural network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 14299
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Man, K.F., Tang, K.S., Kwong, S.: Genetic Algorithms, Concepts and Designs. Springer, Heidelberg (1999)

    MATH  Google Scholar 

  2. Hidalgo, D., Melin, P., Castillo, O.: Type-1 and Type-2 Fuzzy Inference Systems as Integration Methods in Modular Neural Networks for Multimodal Biometry and its Optimization with Genetic Algorithms. Journal of Automation, Mobile Robotics & Intelligent Systems 2(1) (2008) ISSN 1897-8649

    Google Scholar 

  3. Jang, J.-S.R., Sun, C.-T., Mizutani, E.: Neuro-Fuzzy and Soft Computing. A Computational Approach to Learning and Machine. Intelligence Prentice Hall (1997)

    Google Scholar 

  4. Castro, J.R.: Tutorial Type-2 Fuzzy Logic: theory and applications. Universidad Autónoma de Baja California-Instituto Tecnológico de Tijuana (October 9, 2006), http://www.hafsamx.org/cis-chmexico/seminar06/tutorial.pdf

  5. Melin, P., Castillo, O., Gómez, E., Kacprzyk, J., Pedrycz, W.: Analysis and Design of Intelligent Systems Using Soft Computing Techniques. In: Advances in Soft Computing, vol. 41. Springer, Heidelberg (2007)

    Google Scholar 

  6. The 2007 International Joint Conference on Neural Networks, IJCNN, Conference Proceedings, Orlando, Florida, USA, August 12-17. IEEE, Los Alamitos (2007) IEEE Catalog Number: 07CH37922C; ISBN: 1-4244-1380-X, ISSN: 1098-7576, ©2007

    Google Scholar 

  7. Melin, P., Castillo, O.: Hybrid Intelligent Systems for Pattern Recognition Using Soft Computing: An Evolutionary Approach for Neural Networks and Fuzzy Systems. Studies in Fuzziness and Soft Computing (2005) (Hardcover - April 29, 2005)

    Google Scholar 

  8. Alvarado-Verdugo, J.M.: Reconocimiento de la persona por medio de su rostro y huella utilizando redes neuronales modulares y la transformada wavelet. Instituto Tecnológico de Tijuana (2006)

    Google Scholar 

  9. Melin, P., Castillo, O., Kacprzyk, J., Pedrycz, W.: Hybrid Intelligent Systems. Studies in Fuzziness and Soft Computing (Hardcover - December 20, 2006)

    Google Scholar 

  10. Ramos-Gaxiola, J.: Redes Neuronales Aplicadas a la Identificación de Locutor Mediante Voz Utilizando Extracción de Características, Instituto Tecnológico de Tijuana (2006)

    Google Scholar 

  11. Mendoza, O., Melin, P., Castillo, O., Licea, P.: Type-2 Fuzzy Logic for Improving Training Data and Response Integration in Modular Neural Networks for Image Recognition. In: Melin, P., Castillo, O., Aguilar, L.T., Kacprzyk, J., Pedrycz, W. (eds.) IFSA 2007. LNCS (LNAI), vol. 4529, pp. 604–612. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  12. Urias, J., Melin, P., Castillo, O.: A Method for Response Integration in Modular Neural Networks using Interval Type-2 Fuzzy Logic. In: FUZZ-IEEE 2007, Number 1 in FUZZ, London, UK, July 2007, pp. 247–252. IEEE, Los Alamitos (2007)

    Google Scholar 

  13. Urias, J., Hidalgo, D., Melin, P., Castillo, O.: A Method for Response Integration in Modular Neural Networks with Type-2 Fuzzy Logic for Biometric Systems. In: Melin, P., et al. (eds.) Analysis and Design of Intelligent Systems using Soft Computing Techniques, 1st edn. Studies in Fuzziness and Soft Computing, vol. 1(1), pp. 5–15. Springer, Heidelberg (2007)

    Google Scholar 

  14. Urias, J., Hidalgo, D., Melin, P., Castillo, O.: A New Method for Response Integration in Modular Neural Networks Using Type-2 Fuzzy Logic for Biometric Systems. In: Proc. IJCNN-IEEE 2007, Orlando, USA, August 2007. IEEE, Los Alamitos (2007)

    Google Scholar 

  15. Melin, P., Castillo, O., Gómez, E., Kacprzyk, J.: Analysis and Design of Intelligent Systems using Soft Computing Techniques. Advances in Soft Computing (Hardcover - July 11, 2007)

    Google Scholar 

  16. Mendoza, O., Melin, P., Castillo, O., Licea, P.: Modular Neural Networks and Type-2 Fuzzy Logic for Face Recognition. In: Reformat, M. (ed.) Proceedings of NAFIPS 2007, San Diego, June 2007, vol. (1), pages CD Rom. IEEE, Los Alamitos (2007)

    Google Scholar 

  17. Zadeh, L.A.: Knowledge representation in Fuzzy Logic. IEEE Transactions on knowledge data engineering 1, 89 (1989)

    Article  Google Scholar 

  18. Zadeh, L.A.: Fuzzy Logic = Computing with Words. IEEE Transactions on Fuzzy Systems 4(2), 103 (May 1996)

    Article  MathSciNet  Google Scholar 

  19. Mendel, J.M.: UNCERTAIN Rule-Based Fuzzy Logic Systems, Introduction and New Directions. Prentice Hall, Englewood Cliffs (2001)

    MATH  Google Scholar 

  20. Mendel, J.M.: Why We Need Type-2 Fuzzy Logic Systems? Article is provided courtesy of Prentice Hall, May 11 (2001), http://www.informit.com/articles/article.asp?p=21312&rl=1

  21. Mendel, J.M.: Uncertainty: General Discussions, Article is provided courtesy of Prentice Hall, By Jerry Mendel, May 11 (2001), http://www.informit.com/articles/article.asp?p=21313

  22. Mendel, J.M., Bob-John, R.I.: Type-2 Fuzzy Sets Made Simple. IEEE Transactions on Fuzzy Systems 10(2), 117 (2002)

    Article  Google Scholar 

  23. Karnik, N., Mendel, J.M.: Operations on type-2 fuzzy sets, Signal and Image Processing Institute, Department of Electrical Engineering-Systems. University of Southern California, Los Angeles, USA, May 11 (2000)

    Google Scholar 

  24. Zadeh, L.A.: Fuzzy Logic. Computer 1(4), 83–93 (1998)

    Google Scholar 

  25. Hidalgo, D., Castillo, O., Melin, P.: Interval type-2 fuzzy inference systems as integration methods in modular neural networks for multimodal biometry and its optimization with genetic algorithms. International Journal of Biometrics 1(1), 114–128 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hidalgo, D., Melin, P., Licea, G. (2009). Optimization of Modular Neural Networks with Interval Type-2 Fuzzy Logic Integration Using an Evolutionary Method with Application to Multimodal Biometry. In: Melin, P., Kacprzyk, J., Pedrycz, W. (eds) Bio-inspired Hybrid Intelligent Systems for Image Analysis and Pattern Recognition. Studies in Computational Intelligence, vol 256. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04516-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04516-5_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04515-8

  • Online ISBN: 978-3-642-04516-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics