Modular Neural Networks Architecture Optimization with a New Evolutionary Method Using a Fuzzy Combination Particle Swarm Optimization and Genetic Algorithms | SpringerLink
Skip to main content

Modular Neural Networks Architecture Optimization with a New Evolutionary Method Using a Fuzzy Combination Particle Swarm Optimization and Genetic Algorithms

  • Chapter
Bio-inspired Hybrid Intelligent Systems for Image Analysis and Pattern Recognition

Part of the book series: Studies in Computational Intelligence ((SCI,volume 256))

Abstract

We describe in this paper a new hybrid approach for optimization combining Particle Swarm Optimization (PSO) and Genetic Algorithms (GAs) using Fuzzy Logic to integrate the results. The new evolutionary method combines the advantages of PSO and GA to give us an improved FPSO+FGA hybrid method. Fuzzy Logic is used to combine the results of the PSO and GA in the best way possible. Also fuzzy logic is used to adjust parameters in the FPSO and FGA. The new hybrid FPSO+FGA approach is compared with the PSO and GA methods for the optimization of modular neural networks. The new hybrid FPSO+FGA method is shown to be superior with respect to both the individual evolutionary methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 14299
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Angeline, P.J.: Using Selection to Improve Particle Swarm Optimization. In: Proceedings 1998 IEEE World Congress on Computational Intelligence, Anchorage, Alaska, pp. 84–89. IEEE, Los Alamitos (1998)

    Chapter  Google Scholar 

  2. Angeline, P.J.: Evolutionary Optimization Versus Particle Swarm Optimization: Philosophy and Performance Differences. In: Porto, V.W., Waagen, D. (eds.) EP 1998. LNCS, vol. 1447, pp. 601–610. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  3. Back, T., Fogel, D.B., Michalewicz, Z. (eds.): Handbook of Evolutionary Computation. Oxford University Press, Oxford (1997)

    Google Scholar 

  4. Castillo, O., Huesca, G., Valdez, F.: In: Proceedings of the International Conference on Artificial Intelligence, IC-AI 2004, June 21-24, vol. 1, pp. 98–104 (2004)

    Google Scholar 

  5. Castillo, O., Valdez, F., Melin, P.: Hierarchical Genetic Algorithms for topology optimization in fuzzy control systems. International Journal of General Systems 36(5), 575–591 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  6. Castillo, O., Melin, P.: Hybrid intelligent systems for time series prediction using neural networks, fuzzy logic, and fractal theory. IEEE Transactions on Neural Networks 13(6), 1395–1408 (2002)

    Article  Google Scholar 

  7. Eberhart, R.C., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micromachine and Human Science, Nagoya, Japan, pp. 39–43 (1995); Lu, J.-G.: Title of paper with only the first word capitalized. J. Name Stand. Abbrev. (in press)

    Google Scholar 

  8. Emmeche, C.: Garden in the Machine. In: The Emerging Science of Artificial Life, p. 114. Princeton University Press, Princeton (1994)

    Google Scholar 

  9. Fogel, D.B.: An introduction to simulated evolutionary optimization. IEEE transactions on neural networks 5(1), 3–14 (1994)

    Article  Google Scholar 

  10. Goldberg, D.: Genetic Algorithms. Addison-Wesley, Reading (1988)

    Google Scholar 

  11. Holland, J.H.: Adaptation in natural and artificial system. The University of Michigan Press, Ann Arbor (1975)

    Google Scholar 

  12. Kennedy, J., Mendes, R.: Population structure and particle swarm performance. In: Proceeding of IEEE conference on Evolutionary Computation, pp. 1671–1676 (2002)

    Google Scholar 

  13. Kennedy, J., Mendes, R.: The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation 6(1), 58–73 (2002)

    Article  Google Scholar 

  14. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, Piscataway, NJ, pp. 1942–1948 (1995)

    Google Scholar 

  15. Man, K.F., Tang, K.S., Kwong, S.: Genetic Algorithms: Concepts and Designs. Springer, Heidelberg (1999)

    MATH  Google Scholar 

  16. Montiel, O., Castillo, O., Melin, P., Rodriguez, A., Sepulveda, R.: Human evolutionary model: A new approach to optimization. Inf. Sci. 177(10), 2075–2098 (2007)

    Article  Google Scholar 

  17. Valdez, F., Melin, P., Castillo, O.: Evolutionary Computing for the Optimization of Mathematical functions. In: Analysis and Design of Intelligent Systems Using Soft Computing Techniques. Advances in Soft Computing, vol. 41 (June 2007)

    Google Scholar 

  18. Valdez, F., Melin, P.: Parallel Evolutionary Computing using a cluster for Mathematical Function Optimization. In: NAFIPS, San Diego CA USA, June 2007, pp. 598–602 (2007)

    Google Scholar 

  19. Veeramachaneni, K., Osadciw, L., Yan, W.: Improving Classifier Fusion Using Particle Swarm Optimization. In: IEEE Fusion Conference, Italy (July 2006)

    Google Scholar 

  20. Wei, W., Jiatao, S., Zhongzxiu, Y., Zheru., C.: Wavelet-based Illumination Compensation for Face Recognition using Eifenface Method Intelligent Control and Automation. In: WCICA 2006, 21-23 June 2006, vol. 2, pp. 10356–10360 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Valdez, F., Melin, P., Licea, G. (2009). Modular Neural Networks Architecture Optimization with a New Evolutionary Method Using a Fuzzy Combination Particle Swarm Optimization and Genetic Algorithms. In: Melin, P., Kacprzyk, J., Pedrycz, W. (eds) Bio-inspired Hybrid Intelligent Systems for Image Analysis and Pattern Recognition. Studies in Computational Intelligence, vol 256. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04516-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04516-5_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04515-8

  • Online ISBN: 978-3-642-04516-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics