Abstract
There are different benchmarks to test the capabilities of artificial neural networks. The Game of Life is an algorithm that has a very interesting mathematical characterization because can realize universal computing in the sense of a Turing machine. In this paper a new model of Polynomial Cellular Neural Networks that simulates a semi-totalistic automata is presented with the learning design to compute the templates. In this case, the rules of the semi-totalistic automata used, "play" the Game of Life. With the simulations presented we show that the PCNN can realize universal computing.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Chua, L.O., Yang, L.: Cellular neural networks: Theory and Applications. IEEE Trans. Circuits Syst. 35, 1257–1290 (1988)
Chua, L.O., Shi, B.E.: Exploiting Cellular Automata in the design of cellular neural networks for binary image processing. Technical Report No. UCB/ERL M89/130, EECS Department University of California, Berkeley (1989)
Crounse, K.R., Fung, E.L., Chua, L.O.: Efficient Implementation of Neighborhood Logic for Cellular Automata via the Cellular Neural Network Universal Machine. IEEE Transactions on Circuits and Systems- I. Fundamental Theory and Applications 44(4), 355–361 (1997)
Crounse, K.R., Fung, E.L., Chua, L.O.: Efficient Implementation of Neighborhood Logic for Cellular Automata via the Cellular Neural Network Universal Machine. IEEE Transactions on Circuits and Systems—I: Fundamental Theory and Applications 44(4), 355–361 (1997)
Chua, L.O., Roska, T., Venetianer, P.L.: The CNN is Universal as the Turing Machine. IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications 40(4), 289–291 (1993)
Berlekamp, E., Conway, J.H., Guy, R.K.: Winning ways, ch. 25, pp. 817–850. Academic Press, New York (1982)
Chua, L.O., Roska, T., Venetianer, P.L.: Zarandy, Some novel capabilities of CNN: game of life and examples ofmultipath algorithms. In: Proceedings of Second International Workshop on Cellular Neural Networks and their Applications, 1992. CNNA 1992, October 14-16, pp. 276–281 (1992)
Minsky, M., Paper, S.: Perceptrons: An introduction to Computational Geometry. MIT Press, Cambridge (1969)
Hassoun, M.H.: Fundamentals of Artificial Neural Networks. A Bradford Book, MIT Press (1995)
Balsi, M.: Generalized CNN: Potentials of a CNN with Non-Uniform Weights. In: Proceedings of IEEE Second International Workshop on Cellular Neural Networks and their Applications (CNNA 1992), Munich, Germany, October 14-16, pp. 129–134 (1992)
Bilgili, E., Göknar, I.C., Ucan, O.N.: Cellular neural network with trapezoidal activation function. Int. J. Circ. Theor. Appl. 33, 393–417 (2005)
Dogaru, R., Chua, L.: Universal CNN cells. International Journal of Bifurcation and Chaos 9(1), 1–48 (1999)
Gomez-Ramirez, E., Pazienza, G.E., Vilasis-Cardona, X.: Polynomial Discrete Time Cellular Neural Networks to solve the XOR problem. In: The 10th IEEE International Workshop on Cellular Neural Networks and their Applications, The Marmara Istanbul Hotel, Istanbul, Turkey, August 28–30 (2006)
Chua, L., Yang, L.: Cellular neural networks: theory. IEEE Trans. Circuits Syst. 35, 1257–1272 (1988)
Harrer, H., Nossek, J.: Discrete-time cellular neural networks. International Journal of Circuit Theory and Applications 20, 453–467 (1992)
Roska, T., Kék, T., Nemes, L., Zarándy, Á., Szolgay, P.: CSL-CNN software library, version 7.3 (templates and algorithms) (1999)
Yang, Z., Nishio, Y., Ushida, A.: Templates and algorithms for two-layer cellular neural networks neural networks. In: Proc. of IJCNN 2002, vol. 2, pp. 1946–1951 (2002)
Schonmeyer, R., Feiden, D., Tetzlaff, R.: Multi-template training for image processing with cellular neural networks. In: Proc. of 2002 7th IEEE International Workshop on Cellular Neural Networks and their Applications (CNNA 2002), Frankfurt, Germany (2002)
Laiho, M., Paasio, A., Kahanen, A., Halonen, K.: Realization of couplings in a polynomial type mixed-mode cnns. In: Proc. of 2002 7th IEEE International Workshop on Cellular Neural Networks and their Applications (CNNA 2002), Frankfurt, Germany (2002)
Corinto, F.: Cellular Nonlinear Networks: Analysis, Design and Applications. PhD thesis, Politecnico di Torino, Turin (2005)
Gómez-Ramírez, E., Pazienza, G.E., Vilasís-Cardona, X.: Polynomial discrete time cellular neural networks to solve the XOR problem. In: Proc. 10th International Workshop on Cellular Neural Networks and their Applications (CNNA 2006), Istanbul, Turkey (2006)
Niederhofer, C., Tetzlaff, R.: Recent results on the prediction of EEG signals in epilepsy by discrete-time cellular neural networks DTCNN. In: Proc. IEEE International Symposium on Circuits and Systems (ISCAS 2005), pp. 5218–5221 (2005)
Gómez-Ramírez, E., Najim, K., Ikonen, E.: Forecasting Time Series with a New Architecture for Polynomial Artificial Neural Network. Applied Soft Computing 7(4), 1209–1216 (2007)
Berlekamp, E., Conway, J.H., Guy, R.K.: Winning ways for your mathematical plays. Academic Press, New York (1982)
Rendell, P.: A Turing machine in Conway’s game life (2006), http://www.cs.ualberta.ca/~bulitko/f02/papers/tmwords.pdf
Pazienza, G.E., Gomez-Ramirez, E., Vilasis-Cardona, X.: Polynomial Cellular Neural Networks for Implementing Semitotalistic Cellular Automata. In: NNAM 2007, Neural Networks and Associative Memories, Magno Congreso Internacional de Computación, Instituto Politécnico Nacional, IPN; México, 5 al 9 de Noviembre de (2007)
Matsumoto, T., Chua, L., Furukawa, R.: CNN cloning template: connected component detector. IEEE Trans. Circuits Syst. 37(5), 633–635 (1990)
Zarándy, Á.: The art of CNN template design. International Journal of Circuit Theory and Applications 27, 5–23 (1992)
Magnussen, H.:: Discrete-time cellular neural networks: theory and global learning algorithms. PhD thesis, Techinical university of Munich, Munich (1994)
Kozek, T., Roska, T., Chua, L.: Genetic algorithm for CNN template learning. IEEE Trans. Circuits Syst. 40(6), 392–402 (1993)
Magnussen, H., Nossek, J.: Global learning algorithms for discrete-time cellular neural networks. In: Proc. third IEEE International Workshop on Cellular Neural Networks and their Applications (CNNA 1994), Rome, Italy, pp. 165–170 (1994)
Kellner, A., Magnussen, H., Nossek, J.: Texture classification, texture segmentation and text segmentation with discrete-time cellular neural networks. In: Proc. third IEEE International Workshop on Cellular Neural Networks and their Applications (CNNA 1994), Rome, Italy, pp. 243–248 (1994)
Alander, J.T.: An Indexed Bibliography of Genetic Algorithms: Years 1957–1993 (1994); Art of CAD ltd
Bedner, I.: Genetic Algorithms and Genetic Programming at Stanford, Stanford Bookstore (1997)
Holland, J.H.: Adaptation in Natural and Artificial Systems. MIT Press /Bradford Books Edition, Cambridge (1992)
Gómez-Ramírez, E., Mazzanti, F.: Cellular Neural Networks Learning using Genetic Algorithm, 7mo. Congreso Iberoamericano de Reconocimiento de Patrones. In: CIARP 2002, CIC-IPN, Cd. de México, México, Noviembre 19-22 (2002)
Pazienza, G.E., Vilasis-Cardona, X., Gomez-Ramirez, E.: Polynomial Cellular Neural Networks for Implementing the Game of Life. In: de Sá, J.M., Alexandre, L.A., Duch, W., Mandic, D.P. (eds.) ICANN 2007. LNCS, vol. 4668, pp. 914–923. Springer, Heidelberg (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Gomez-Ramirez, E., Sedeño, E.H., Pazienza, G.E. (2009). Discovering Universal Polynomial Cellular Neural Networks through Genetic Algorithms. In: Melin, P., Kacprzyk, J., Pedrycz, W. (eds) Bio-inspired Hybrid Intelligent Systems for Image Analysis and Pattern Recognition. Studies in Computational Intelligence, vol 256. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04516-5_11
Download citation
DOI: https://doi.org/10.1007/978-3-642-04516-5_11
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-04515-8
Online ISBN: 978-3-642-04516-5
eBook Packages: EngineeringEngineering (R0)