Discovering Universal Polynomial Cellular Neural Networks through Genetic Algorithms | SpringerLink
Skip to main content

Abstract

There are different benchmarks to test the capabilities of artificial neural networks. The Game of Life is an algorithm that has a very interesting mathematical characterization because can realize universal computing in the sense of a Turing machine. In this paper a new model of Polynomial Cellular Neural Networks that simulates a semi-totalistic automata is presented with the learning design to compute the templates. In this case, the rules of the semi-totalistic automata used, "play" the Game of Life. With the simulations presented we show that the PCNN can realize universal computing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 14299
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chua, L.O., Yang, L.: Cellular neural networks: Theory and Applications. IEEE Trans. Circuits Syst. 35, 1257–1290 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  2. Chua, L.O., Shi, B.E.: Exploiting Cellular Automata in the design of cellular neural networks for binary image processing. Technical Report No. UCB/ERL M89/130, EECS Department University of California, Berkeley (1989)

    Google Scholar 

  3. Crounse, K.R., Fung, E.L., Chua, L.O.: Efficient Implementation of Neighborhood Logic for Cellular Automata via the Cellular Neural Network Universal Machine. IEEE Transactions on Circuits and Systems- I. Fundamental Theory and Applications 44(4), 355–361 (1997)

    Article  MathSciNet  Google Scholar 

  4. Crounse, K.R., Fung, E.L., Chua, L.O.: Efficient Implementation of Neighborhood Logic for Cellular Automata via the Cellular Neural Network Universal Machine. IEEE Transactions on Circuits and Systems—I: Fundamental Theory and Applications 44(4), 355–361 (1997)

    Article  MathSciNet  Google Scholar 

  5. Chua, L.O., Roska, T., Venetianer, P.L.: The CNN is Universal as the Turing Machine. IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications 40(4), 289–291 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  6. Berlekamp, E., Conway, J.H., Guy, R.K.: Winning ways, ch. 25, pp. 817–850. Academic Press, New York (1982)

    MATH  Google Scholar 

  7. Chua, L.O., Roska, T., Venetianer, P.L.: Zarandy, Some novel capabilities of CNN: game of life and examples ofmultipath algorithms. In: Proceedings of Second International Workshop on Cellular Neural Networks and their Applications, 1992. CNNA 1992, October 14-16, pp. 276–281 (1992)

    Google Scholar 

  8. Minsky, M., Paper, S.: Perceptrons: An introduction to Computational Geometry. MIT Press, Cambridge (1969)

    MATH  Google Scholar 

  9. Hassoun, M.H.: Fundamentals of Artificial Neural Networks. A Bradford Book, MIT Press (1995)

    Google Scholar 

  10. Balsi, M.: Generalized CNN: Potentials of a CNN with Non-Uniform Weights. In: Proceedings of IEEE Second International Workshop on Cellular Neural Networks and their Applications (CNNA 1992), Munich, Germany, October 14-16, pp. 129–134 (1992)

    Google Scholar 

  11. Bilgili, E., Göknar, I.C., Ucan, O.N.: Cellular neural network with trapezoidal activation function. Int. J. Circ. Theor. Appl. 33, 393–417 (2005)

    Article  MATH  Google Scholar 

  12. Dogaru, R., Chua, L.: Universal CNN cells. International Journal of Bifurcation and Chaos 9(1), 1–48 (1999)

    Article  MATH  Google Scholar 

  13. Gomez-Ramirez, E., Pazienza, G.E., Vilasis-Cardona, X.: Polynomial Discrete Time Cellular Neural Networks to solve the XOR problem. In: The 10th IEEE International Workshop on Cellular Neural Networks and their Applications, The Marmara Istanbul Hotel, Istanbul, Turkey, August 28–30 (2006)

    Google Scholar 

  14. Chua, L., Yang, L.: Cellular neural networks: theory. IEEE Trans. Circuits Syst. 35, 1257–1272 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  15. Harrer, H., Nossek, J.: Discrete-time cellular neural networks. International Journal of Circuit Theory and Applications 20, 453–467 (1992)

    Article  MATH  Google Scholar 

  16. Roska, T., Kék, T., Nemes, L., Zarándy, Á., Szolgay, P.: CSL-CNN software library, version 7.3 (templates and algorithms) (1999)

    Google Scholar 

  17. Yang, Z., Nishio, Y., Ushida, A.: Templates and algorithms for two-layer cellular neural networks neural networks. In: Proc. of IJCNN 2002, vol. 2, pp. 1946–1951 (2002)

    Google Scholar 

  18. Schonmeyer, R., Feiden, D., Tetzlaff, R.: Multi-template training for image processing with cellular neural networks. In: Proc. of 2002 7th IEEE International Workshop on Cellular Neural Networks and their Applications (CNNA 2002), Frankfurt, Germany (2002)

    Google Scholar 

  19. Laiho, M., Paasio, A., Kahanen, A., Halonen, K.: Realization of couplings in a polynomial type mixed-mode cnns. In: Proc. of 2002 7th IEEE International Workshop on Cellular Neural Networks and their Applications (CNNA 2002), Frankfurt, Germany (2002)

    Google Scholar 

  20. Corinto, F.: Cellular Nonlinear Networks: Analysis, Design and Applications. PhD thesis, Politecnico di Torino, Turin (2005)

    Google Scholar 

  21. Gómez-Ramírez, E., Pazienza, G.E., Vilasís-Cardona, X.: Polynomial discrete time cellular neural networks to solve the XOR problem. In: Proc. 10th International Workshop on Cellular Neural Networks and their Applications (CNNA 2006), Istanbul, Turkey (2006)

    Google Scholar 

  22. Niederhofer, C., Tetzlaff, R.: Recent results on the prediction of EEG signals in epilepsy by discrete-time cellular neural networks DTCNN. In: Proc. IEEE International Symposium on Circuits and Systems (ISCAS 2005), pp. 5218–5221 (2005)

    Google Scholar 

  23. Gómez-Ramírez, E., Najim, K., Ikonen, E.: Forecasting Time Series with a New Architecture for Polynomial Artificial Neural Network. Applied Soft Computing 7(4), 1209–1216 (2007)

    Article  Google Scholar 

  24. Berlekamp, E., Conway, J.H., Guy, R.K.: Winning ways for your mathematical plays. Academic Press, New York (1982)

    MATH  Google Scholar 

  25. Rendell, P.: A Turing machine in Conway’s game life (2006), http://www.cs.ualberta.ca/~bulitko/f02/papers/tmwords.pdf

  26. Pazienza, G.E., Gomez-Ramirez, E., Vilasis-Cardona, X.: Polynomial Cellular Neural Networks for Implementing Semitotalistic Cellular Automata. In: NNAM 2007, Neural Networks and Associative Memories, Magno Congreso Internacional de Computación, Instituto Politécnico Nacional, IPN; México, 5 al 9 de Noviembre de (2007)

    Google Scholar 

  27. Matsumoto, T., Chua, L., Furukawa, R.: CNN cloning template: connected component detector. IEEE Trans. Circuits Syst. 37(5), 633–635 (1990)

    Article  Google Scholar 

  28. Zarándy, Á.: The art of CNN template design. International Journal of Circuit Theory and Applications 27, 5–23 (1992)

    Article  Google Scholar 

  29. Magnussen, H.:: Discrete-time cellular neural networks: theory and global learning algorithms. PhD thesis, Techinical university of Munich, Munich (1994)

    Google Scholar 

  30. Kozek, T., Roska, T., Chua, L.: Genetic algorithm for CNN template learning. IEEE Trans. Circuits Syst. 40(6), 392–402 (1993)

    Article  Google Scholar 

  31. Magnussen, H., Nossek, J.: Global learning algorithms for discrete-time cellular neural networks. In: Proc. third IEEE International Workshop on Cellular Neural Networks and their Applications (CNNA 1994), Rome, Italy, pp. 165–170 (1994)

    Google Scholar 

  32. Kellner, A., Magnussen, H., Nossek, J.: Texture classification, texture segmentation and text segmentation with discrete-time cellular neural networks. In: Proc. third IEEE International Workshop on Cellular Neural Networks and their Applications (CNNA 1994), Rome, Italy, pp. 243–248 (1994)

    Google Scholar 

  33. Alander, J.T.: An Indexed Bibliography of Genetic Algorithms: Years 1957–1993 (1994); Art of CAD ltd

    Google Scholar 

  34. Bedner, I.: Genetic Algorithms and Genetic Programming at Stanford, Stanford Bookstore (1997)

    Google Scholar 

  35. Holland, J.H.: Adaptation in Natural and Artificial Systems. MIT Press /Bradford Books Edition, Cambridge (1992)

    Google Scholar 

  36. Gómez-Ramírez, E., Mazzanti, F.: Cellular Neural Networks Learning using Genetic Algorithm, 7mo. Congreso Iberoamericano de Reconocimiento de Patrones. In: CIARP 2002, CIC-IPN, Cd. de México, México, Noviembre 19-22 (2002)

    Google Scholar 

  37. Pazienza, G.E., Vilasis-Cardona, X., Gomez-Ramirez, E.: Polynomial Cellular Neural Networks for Implementing the Game of Life. In: de Sá, J.M., Alexandre, L.A., Duch, W., Mandic, D.P. (eds.) ICANN 2007. LNCS, vol. 4668, pp. 914–923. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gomez-Ramirez, E., Sedeño, E.H., Pazienza, G.E. (2009). Discovering Universal Polynomial Cellular Neural Networks through Genetic Algorithms. In: Melin, P., Kacprzyk, J., Pedrycz, W. (eds) Bio-inspired Hybrid Intelligent Systems for Image Analysis and Pattern Recognition. Studies in Computational Intelligence, vol 256. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04516-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04516-5_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04515-8

  • Online ISBN: 978-3-642-04516-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics