Abstract
This paper presents a novel application of the interval type-1 non-singleton type-2 fuzzy logic system (FLS) for one step ahead prediction of the daily exchange rate between Mexican Peso and US Dollar (MXNUSD) using the recursive least-squared (RLS)-back-propagation (BP) hybrid learning method. Experiments show that the exchange rate is predictable. A non-singleton type-1 FLS and an interval type-1 non-singleton type-2 FLS, both using only BP learning method, are used as a benchmarking systems to compare the results of the hybrid interval type-1 non-singleton type-2 FLS (RLS-BP) forecaster.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Mendel, J.M.: Uncertain rule-based fuzzy Logic systems: Introduction and New Directions. Prentice-Hall, Upper Saddle River (2001)
Mendez, G., Cavazos, A., Leduc, L., Soto, R.: Hot strip temperature prediction using hybrid learning for interval singleton type-2 FLS. In: Proceedings of the IASTED International Conference on Modelling and Simulation, pp. 380–385. Palm Springs, CA (2003)
Mendez, G.: Orthogonal-back propagation hybrid learning algorithm for type-2 fuzzy logic systems. In: IEEE Proceedings of the NAFIPS 2004 International Conference on Fuzzy Sets, Banff Alberta Canada, vol. Vol. 2, pp. 899–902 (2004)
Hagras, H.A.: A hierarchical type-2 fuzzy logic control architecture for autonomous mobile robots. IEEE Transactions on Fuzzy Systems 12(4), 524–539 (2004)
Castillo, O., Melin, P.: A new hybrid approach for plant monitoring and diagnostics using type-2 fuzzy logic and fractal theory. In: Proceedings of the International Conference FUZZ 2003, pp. 102–107 (2003)
Castillo, O., Huesca, G., Valdez, F.G.: Evolutionary computing for optimizing type-2 fuzzy systems in intelligent control of non-linear dynamic plants. In: IEEE Proceedings of the NAFIPS 2005 International Conference, pp. 247–251 (2005)
Anastasakis, L., Mort, N.: Prediction of the GSPUSD exchange rate using statistical and neural network models. In: Proceedings of the IASTED International Conference on Artificial Intelligence and Applications, Benalmadena, España, pp. 493–498 (2003)
Lendasse, A., de Boot, E., Wertz, V., Verleysen, M.: Non-linear financial time series forecasting – application to the bel 20 stock market index. European Journal of Economics and Social Systems 14, 81–91 (2000)
Ito, Y.: Neuro-fuzzy phillips-type stabilization policy for stock process and exchange-rates models. In: Proceedings of the IASTED International Conference on Artificial Intelligence and Applications, Benalmadena, España, pp. 499–504 (2003)
Saad, E.W., Prokhorov, D.V., Wunch II, D.C.: Comparative study of stock trend prediction using time delay, recurrent and probabilistic neural networks. IEE Trans. On Neural Networks 9, 1456–1470 (1998)
Leigh, W., Paz, M., Purvis, R.: An analysis of a hybrid neural network and pattern recognition technique for short term increases in the NYSE composite index. The International Journal of Management Science 30, 169–176 (2002)
Liang, Q., Mendel, J.M.: Interval type-2 fuzzy logic systems: theory and design. Trans. on Fuzzy Systems 8, 535–550 (2000)
John, R.I.: Embedded interval valued type-2 fuzzy sets. In: Proceedings of the 2002 IEEE International Conference on Fuzzy Systems, Honolulu, Hawaii, vol. 1&2, pp. 1316–1321 (2002)
Mendel, J.M., John, R.I.: Type-2 fuzzy sets made simple. IEEE Transactions on Fuzzy Systems 10, 117–127 (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Mendez, G.M., Hernandez, A. (2009). Prediction of the MXNUSD Exchange Rate Using Hybrid IT2 FLS Forecaster. In: Melin, P., Kacprzyk, J., Pedrycz, W. (eds) Bio-inspired Hybrid Intelligent Systems for Image Analysis and Pattern Recognition. Studies in Computational Intelligence, vol 256. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04516-5_10
Download citation
DOI: https://doi.org/10.1007/978-3-642-04516-5_10
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-04515-8
Online ISBN: 978-3-642-04516-5
eBook Packages: EngineeringEngineering (R0)