A Model Based on Possibilistic Certainty Levels for Incomplete Databases | SpringerLink
Skip to main content

A Model Based on Possibilistic Certainty Levels for Incomplete Databases

  • Conference paper
Scalable Uncertainty Management (SUM 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5785))

Included in the following conference series:

  • 468 Accesses

Abstract

This paper deals with the modeling and querying of a database containing uncertain attribute values, in the situation where some knowledge is available about the more or less certain value (or disjunction of values) that a given attribute in a given tuple can take. This is represented in the setting of possibility theory. A relational database model suited to this context is introduced, and selection, join and union operators of relational algebra are extended so as to handle such relations. It is shown that i) the model in question is a strong representation system for the algebraic operators considered, and that ii) the data complexity associated with the extended operators in this context is the same as in the classical database case, which makes the approach highly scalable. A possibilistic logic encoding of the model is also outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley, Reading (1995)

    MATH  Google Scholar 

  2. Antova, L., Jansen, T., Koch, C., Olteanu, D.: Fast and simple processing of uncertain data. In: Proc. of ICDE 2008, pp. 983–992 (2008)

    Google Scholar 

  3. Benjelloun, O., Das Sarma, A., Halevy, A., Widom, J.: ULDBs: Databases with uncertainty and lineage. In: Proc. VLDB 2006, pp. 953–964 (2006)

    Google Scholar 

  4. Bosc, P., Pivert, O.: About projection-selection-join queries addressed to possibilistic relational databases. IEEE Trans. on Fuzzy Systems 13, 124–139 (2005)

    Article  Google Scholar 

  5. Codd, E.F.: Extending the relational database model to capture more meaning. ACM Transactions on Database Systems 4(4), 397–434 (1979)

    Article  Google Scholar 

  6. Dalvi, N., Suciu, D.: Management of probabilistic data: Foundations and challenges. In: Proc. of PODS 2007, pp. 1–12 (2007)

    Google Scholar 

  7. Das Sarma, A., Benjelloun, O., Halevy, A., Widom, J.: Working models for uncertain data. In: Proc. of 22nd Int. Conf. on Data Engineering, ICDE (2006)

    Google Scholar 

  8. Dubois, D., Prade, H.: Necessity measures and the resolution principle. IEEE Trans. Syst., Man and Cyber. 17, 474–478 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dubois, D., Prade, H.: Possibility Theory. Plenum, New York (1988)

    Book  MATH  Google Scholar 

  10. Dubois, D., Lang, J., Prade, H.: Automated reasoning using possibilistic logic: Semantics, belief revision, and variable certainty weights. IEEE Transactions on Knowledge and Data Engineering 6(1), 64–71 (1994)

    Article  Google Scholar 

  11. Eiter, T., Lukasiewicz, T., Walter, M.: Extension of the relational algebra to probabilistic complex values. In: Schewe, K.-D., Thalheim, B. (eds.) FoIKS 2000. LNCS, vol. 1762, pp. 94–115. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  12. Green, C.: Theorem-proving by resolution as a basis for question-answering systems. In: Michie, D., Meltzer, B. (eds.) Machine Intellig., vol. 4, pp. 183–205. Edinb. Uni. Pr. (1969)

    Google Scholar 

  13. Green, T.J., Tannen, V.: Models for incomplete and probabilistic information. IEEE Data Eng. Bull. 29, 17–24 (2006)

    Google Scholar 

  14. Imielinski, T., Lipski, W.: Incomplete information in relational databases. J. of the ACM 31, 761–791 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lakshmanan, L., Leone, N., Ross, R., Subrahmanian, V.S.: Probview: A flexible probabilistic system. ACM Trans. Database Syst. 22(3), 419–469 (1997)

    Article  Google Scholar 

  16. Lipski, W.: Semantic issues connected with incomplete information databases. ACM Transactions on Database Systems 4(3), 262–296 (1979)

    Article  Google Scholar 

  17. Prade, H., Testemale, C.: Generalizing database relational algebra for the treatment of incomplete/uncertain information and vague queries. Information Sciences 34, 115–143 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ré, C., Dalvi, N., Suciu, D.: Query evaluation on probabilistic databases. IEEE Data Eng. Bull. 29, 25–31 (2006)

    Google Scholar 

  19. Zadeh, L.A.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems 1, 3–28 (1978)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bosc, P., Pivert, O., Prade, H. (2009). A Model Based on Possibilistic Certainty Levels for Incomplete Databases. In: Godo, L., Pugliese, A. (eds) Scalable Uncertainty Management. SUM 2009. Lecture Notes in Computer Science(), vol 5785. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04388-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04388-8_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04387-1

  • Online ISBN: 978-3-642-04388-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics