Abstract
Model complexity of neural networks is investigated using tools from nonlinear approximation and integration theory. Estimates of network complexity are obtained from inspection of upper bounds on decrease of approximation errors in approximation of multivariable functions by networks with increasing numbers of units. The upper bounds are derived using integral transforms with kernels corresponding to various types of computational units. The results are applied to perceptron networks.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Carroll, S.M., Dickinson, B.W.: Construction of neural net using the radon transform. In: Proc. IJCN, vol. I, pp. 607–611 (1989)
Ito, Y.: Representation of functions by superpositions of a step or sigmoid function and their applications to neural network theory. Neural Networks 4, 385–394 (1991)
Park, J., Sandberg, I.: Universal approximation using radial–basis–function networks. Neural Computation 3, 246–257 (1991)
Park, J., Sandberg, I.: Approximation and radial basis function networks. Neural Computation 5, 305–316 (1993)
Jones, L.K.: A simple lemma on greedy approximation in Hilbert space and convergence rates for projection pursuit regression and neural network training. Annals of Statistics 20, 608–613 (1992)
Barron, A.R.: Universal approximation bounds for superpositions of a sigmoidal function. IEEE Transactions on Information Theory 39, 930–945 (1993)
Girosi, F., Anzellotti, G.: Rates of convergence for Radial Basis Functions and neural networks. In: Mammone, R.J. (ed.) Artificial Neural Networks for Speech and Vision, pp. 97–113. Chapman & Hall, Boca Raton (1993)
Kůrková, V., Kainen, P.C., Kreinovich, V.: Estimates of the number of hidden units and variation with respect to half-spaces. Neural Networks 10, 1061–1068 (1997)
Kainen, P.C., Kůrková, V., Vogt, A.: A Sobolev-type upper bound for rates of approximation by linear combinations of Heaviside plane waves. J. of Approximation Theory 147, 1–10 (2007)
Kainen, P.C., Kůrková, V.: An integral upper bound for neural network approximation. Neural Computation (to appear, 2009)
Girosi, F.: Approximation error bounds that use VC- bounds. In: Proceedings of the International Conference on Artificial Neural Networks, Paris, pp. 295–302 (1995)
Kainen, P.C., Kůrková, V., Sanguineti, M.: Complexity of Gaussian radial basis networks approximating smooth functions. J. of Complexity 25, 63–74 (2009)
Kainen, P.C., Kůrková, V., Vogt, A.: Integral combinations of heavisides. Mathematische Nachrichten (to appear, 2009)
Pisier, G.: Remarques sur un résultat non publié de B. Maurey. In: Séminaire d’Analyse Fonctionnelle 1980-1981, École Polytechnique, Centre de Mathématiques, Palaiseau, France, vol. I(12) (1981)
Darken, C., Donahue, M., Gurvits, L., Sontag, E.: Rate of approximation results motivated by robust neural network learning. In: Proceedings of the Sixth Annual ACM Conference on Computational Learning Theory, pp. 303–309. The Association for Computing Machinery, New York (1993)
Kůrková, V.: High-dimensional approximation and optimization by neural networks. In: Suykens, J., Horváth, G., Basu, S., Micchelli, C., Vandewalle, J. (eds.) Advances in Learning Theory: Methods, Models and Applications, ch. 4, pp. 69–88. IOS Press, Amsterdam (2003)
Kůrková, V., Sanguineti, M.: Error estimates for approximate optimization by the extended Ritz method. SIAM J. on Optimization 15, 461–487 (2005)
Yoshida, K.: Functional Analysis. Springer, Berlin (1965)
Kůrková, V., Savický, P., Hlaváčková, K.: Representations and rates of approximation of real–valued Boolean functions by neural networks. Neural Networks 11, 651–659 (1998)
Friedman, A.: Learning and Soft Computing. Dover, New York (1982)
Rudin, W.: Real and Complex Analysis. MacGraw-Hill, New York (1974)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kůrková, V. (2009). Model Complexity of Neural Networks and Integral Transforms. In: Alippi, C., Polycarpou, M., Panayiotou, C., Ellinas, G. (eds) Artificial Neural Networks – ICANN 2009. ICANN 2009. Lecture Notes in Computer Science, vol 5768. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04274-4_73
Download citation
DOI: https://doi.org/10.1007/978-3-642-04274-4_73
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-04273-7
Online ISBN: 978-3-642-04274-4
eBook Packages: Computer ScienceComputer Science (R0)