Abstract
Synaptic plasticity is one of essential and central functions for the memory, the learning, and the development of the brains. Triggered by recent physiological experiments, the basic mechanisms of the spike-timing-dependent plasticity (STDP) have been widely analyzed in model studies. In this paper, we analyze complex structures in neural networks evolved by the STDP. In particular, we introduce the complex network theory to analyze spatiotemporal network structures constructed through the STDP. As a result, we show that nonrandom structures emerge in the neural network through the STDP.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Markram, H., Lüboke, J., Frotscher, M., Sakmann, B.: Regulation of Synaptic Efficacy by Coincidence of Postsynaptic APs and EPSPs. Science 275, 213–215 (1997)
Bell, C.C., Han, V.Z., Sugawara, Y., Grant, K.: Synaptic plasticity in a cerebellum-like structure depends on temporal order. Nature 387, 278–281 (1997)
Bi, G., Poo, M.: Synaptic Modifications in Cultured Hippocampal Neurons: Dependece on Spike Timing, Synaptic Strength and Postsynaptic Cell Type. The Journal of Neuroscience 18(24), 10464–10472 (1998)
Zhang, L.I., Tao, H.W., Holt, C.E., Harris, W.A., ming Poo, M.: A Critical window for cooperation and competition among developing retinotectal synapses. Nature 395, 37–44 (1998)
Feldman, D.E.: Timing-Based LTP and LTD at Vertical Inputs to Layer II/III Pyramidal Cells in Rat Barrel Cortex. Neuron 27, 45–56 (2000)
Froemke, R.C., Dan, Y.: Spike-timing-dependent synaptic modification induced by natural spike trains. Nature 416, 433–437 (2002)
Abbott, L.F., Nelson, S.B.: Synaptic plasticity: taming the beast. Nature neuroscience supplement 3, 1178–1183 (2000)
Song, S., Miller, K.D., Abbott, L.F.: Competitive Hebbian learning through spike-timing-dependent synaptic plasticity. Nature Neuroscience 3(9), 919–926 (2000)
van Rossum, M.C.W., Bi, G.Q., Turrigiano, G.G.: Stable Hebbian Learning from Spike Timing-Dependent Plasticity. The Journal of Neuroscience 20(23), 8812–8821 (2000)
Rubin, J., Lee, D.D., Sompolinsky, H.: Equilibrium Properties of Temporally Asymmetric Hebbian Plasticity. Physical Review Letters 86(2), 364–367 (2001)
Gütig, R., Aharonov, R., Rotter, S., Sompolinsky, H.: Learning Input Correlations through Nonlinear Temporally Asymmetric Hebbian Plasticity. The Journal of Neuroscience 23(9), 3687–3714 (2003)
Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998)
Barabási, A.L., Albert, R.: Emergence of Scaling in Random Networks. Science 286, 509–512 (1999)
Izhikevich, E.M.: Simple Model of Spiking Neurons. IEEE Transactions on Neural Networks 14(6), 1569–1572 (2003)
Izhikevich, E.M., Desai, N.S.: Relating STDP to BCM. Neural Computation 15, 1511–1523 (2003)
Newman, M.E.J.: Assortative mixing in networks. Physical Review Letters 89, 208701 (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kato, H., Ikeguchi, T., Aihara, K. (2009). Structural Analysis on STDP Neural Networks Using Complex Network Theory. In: Alippi, C., Polycarpou, M., Panayiotou, C., Ellinas, G. (eds) Artificial Neural Networks – ICANN 2009. ICANN 2009. Lecture Notes in Computer Science, vol 5768. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04274-4_32
Download citation
DOI: https://doi.org/10.1007/978-3-642-04274-4_32
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-04273-7
Online ISBN: 978-3-642-04274-4
eBook Packages: Computer ScienceComputer Science (R0)