Structural Analysis on STDP Neural Networks Using Complex Network Theory | SpringerLink
Skip to main content

Structural Analysis on STDP Neural Networks Using Complex Network Theory

  • Conference paper
Artificial Neural Networks – ICANN 2009 (ICANN 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5768))

Included in the following conference series:

Abstract

Synaptic plasticity is one of essential and central functions for the memory, the learning, and the development of the brains. Triggered by recent physiological experiments, the basic mechanisms of the spike-timing-dependent plasticity (STDP) have been widely analyzed in model studies. In this paper, we analyze complex structures in neural networks evolved by the STDP. In particular, we introduce the complex network theory to analyze spatiotemporal network structures constructed through the STDP. As a result, we show that nonrandom structures emerge in the neural network through the STDP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Markram, H., Lüboke, J., Frotscher, M., Sakmann, B.: Regulation of Synaptic Efficacy by Coincidence of Postsynaptic APs and EPSPs. Science 275, 213–215 (1997)

    Article  Google Scholar 

  2. Bell, C.C., Han, V.Z., Sugawara, Y., Grant, K.: Synaptic plasticity in a cerebellum-like structure depends on temporal order. Nature 387, 278–281 (1997)

    Article  Google Scholar 

  3. Bi, G., Poo, M.: Synaptic Modifications in Cultured Hippocampal Neurons: Dependece on Spike Timing, Synaptic Strength and Postsynaptic Cell Type. The Journal of Neuroscience 18(24), 10464–10472 (1998)

    Google Scholar 

  4. Zhang, L.I., Tao, H.W., Holt, C.E., Harris, W.A., ming Poo, M.: A Critical window for cooperation and competition among developing retinotectal synapses. Nature 395, 37–44 (1998)

    Article  Google Scholar 

  5. Feldman, D.E.: Timing-Based LTP and LTD at Vertical Inputs to Layer II/III Pyramidal Cells in Rat Barrel Cortex. Neuron 27, 45–56 (2000)

    Article  Google Scholar 

  6. Froemke, R.C., Dan, Y.: Spike-timing-dependent synaptic modification induced by natural spike trains. Nature 416, 433–437 (2002)

    Article  Google Scholar 

  7. Abbott, L.F., Nelson, S.B.: Synaptic plasticity: taming the beast. Nature neuroscience supplement 3, 1178–1183 (2000)

    Article  Google Scholar 

  8. Song, S., Miller, K.D., Abbott, L.F.: Competitive Hebbian learning through spike-timing-dependent synaptic plasticity. Nature Neuroscience 3(9), 919–926 (2000)

    Article  Google Scholar 

  9. van Rossum, M.C.W., Bi, G.Q., Turrigiano, G.G.: Stable Hebbian Learning from Spike Timing-Dependent Plasticity. The Journal of Neuroscience 20(23), 8812–8821 (2000)

    Google Scholar 

  10. Rubin, J., Lee, D.D., Sompolinsky, H.: Equilibrium Properties of Temporally Asymmetric Hebbian Plasticity. Physical Review Letters 86(2), 364–367 (2001)

    Article  Google Scholar 

  11. Gütig, R., Aharonov, R., Rotter, S., Sompolinsky, H.: Learning Input Correlations through Nonlinear Temporally Asymmetric Hebbian Plasticity. The Journal of Neuroscience 23(9), 3687–3714 (2003)

    Google Scholar 

  12. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998)

    Article  Google Scholar 

  13. Barabási, A.L., Albert, R.: Emergence of Scaling in Random Networks. Science 286, 509–512 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Izhikevich, E.M.: Simple Model of Spiking Neurons. IEEE Transactions on Neural Networks 14(6), 1569–1572 (2003)

    Article  MathSciNet  Google Scholar 

  15. Izhikevich, E.M., Desai, N.S.: Relating STDP to BCM. Neural Computation 15, 1511–1523 (2003)

    Article  MATH  Google Scholar 

  16. Newman, M.E.J.: Assortative mixing in networks. Physical Review Letters 89, 208701 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kato, H., Ikeguchi, T., Aihara, K. (2009). Structural Analysis on STDP Neural Networks Using Complex Network Theory. In: Alippi, C., Polycarpou, M., Panayiotou, C., Ellinas, G. (eds) Artificial Neural Networks – ICANN 2009. ICANN 2009. Lecture Notes in Computer Science, vol 5768. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04274-4_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04274-4_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04273-7

  • Online ISBN: 978-3-642-04274-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics