Abstract
The imperfect nature of context in Ambient Intelligence environments and the special characteristics of the entities that possess and share the available context information render contextual reasoning a very challenging task. Most current Ambient Intelligence systems have not successfully addressed these challenges, as they rely on simplifying assumptions, such as perfect knowledge of context, centralized context, and unbounded computational and communicating capabilities. This paper presents a knowledge representation model based on the Multi-Context Systems paradigm, which represents ambient agents as autonomous logic-based entities that exchange context information through mappings, and uses preference information to express their confidence in the imported knowledge. On top of this model, we have developed an argumentation framework that exploits context and preference information to resolve conflicts caused by the interaction of ambient agents through mappings, and a distributed algorithm for query evaluation.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Henricksen, K., Indulska, J.: Modelling and Using Imperfect Context Information. In: Proceedings of PERCOMW 2004, Washington, DC, USA, pp. 33–37. IEEE Computer Society, Los Alamitos (2004)
Bikakis, A., Patkos, T., Antoniou, G., Plexousakis, D.: A Survey of Semantics-based Approaches for Context Reasoning in Ambient Intelligence. In: Constructing Ambient Intelligence. Communications in Computer and Information Science, pp. 14–23. Springer, Heidelberg (2008)
Bikakis, A., Antoniou, G., Hassapis, P.: Alternative Strategies for Conflict Resolution in Multi-Context Systems. In: Proceedings of the 5th IFIP Conference on Artificial Intelligence Applications and Innovations (AIAI 2009). Springer, Heidelberg (2009)
McCarthy, J.: Generality in Artificial Intelligence. Communications of the ACM 30(12), 1030–1035 (1987)
Buvac, S., Mason, I.A.: Propositional Logic of Context. In: AAAI, pp. 412–419 (1993)
Giunchiglia, F., Serafini, L.: Multilanguage hierarchical logics, or: how we can do without modal logics. Artificial Intelligence 65(1) (1994)
Ghidini, C., Giunchiglia, F.: Local Models Semantics, or contextual reasoning=locality+compatibility. Artificial Intelligence 127(2), 221–259 (2001)
Serafini, L., Bouquet, P.: Comparing formal theories of context in AI. Artificial Intelligence 155(1-2), 41–67 (2004)
Roelofsen, F., Serafini, L.: Minimal and Absent Information in Contexts. In: IJCAI, pp. 558–563 (2005)
Brewka, G., Roelofsen, F., Serafini, L.: Contextual Default Reasoning. In: IJCAI, pp. 268–273 (2007)
Sabater, J., Sierra, C., Parsons, S., Jennings, N.R.: Engineering Executable Agents using Multi-context Systems. Journal of Logic and Computation 12(3), 413–442 (2002)
Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Inconsistency tolerance in P2P data integration: An epistemic logic approach. In: Bierman, G., Koch, C. (eds.) DBPL 2005. LNCS, vol. 3774, pp. 90–105. Springer, Heidelberg (2005)
Chatalic, P., Nguyen, G.H., Rousset, M.C.: Reasoning with Inconsistencies in Propositional Peer-to-Peer Inference Systems. In: ECAI, pp. 352–356 (2006)
Binas, A., Sheila, A.: Peer-to-Peer Query Answering with Inconsistent Knowledge. In: KR, pp. 329–339 (2008)
Simari, G.R., Loui, R.P.: A Mathematical Treatment of Defeasible Reasoning and its Implementation. Artificial Intelligence 53(2-3), 125–157 (1992)
Stolzenburg, F., García, A.J., Chesñevar, C.I., Simari, G.R.: Computing Generalized Specificity. Journal of Applied Non-Classical Logics 13(1), 87–113 (2003)
Prakken, H., Sartor, G.: Argument-Based Extended Logic Programming with Defeasible Priorities. Journal of Applied Non-Classical Logics 7(1) (1997)
Governatori, G., Maher, M.J., Billington, D., Antoniou, G.: Argumentation Semantics for Defeasible Logics. Journal of Logic and Computation 14(5), 675–702 (2004)
Bench-Capon, T.: Persuasion in Practical Argument Using Value-based Argumentation Frameworks. Journal of Logic and Computation 13, 429–448 (2003)
Kaci, S., van der Torre, L.: Preference-based argumentation: Arguments supporting multiple values. Internation Journal of Approximate Reasoning 48(3), 730–751 (2008)
Amgoud, L., Parsons, S., Perrussel, L.: An Argumentation Framework based on contextual Preferences. In: International Conference on Formal and Applied and Practical Reasoning (FAPR 2000), pp. 59–67 (2000)
Amgoud, L., Cayrol, C.: A Reasoning Model Based on the Production of Acceptable Arguments. Annals of Mathematic and Artificial Intelligence 34(1-3), 197–215 (2002)
Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artif. Intell. 77, 321–357 (1995)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bikakis, A., Antoniou, G. (2009). Contextual Argumentation in Ambient Intelligence. In: Erdem, E., Lin, F., Schaub, T. (eds) Logic Programming and Nonmonotonic Reasoning. LPNMR 2009. Lecture Notes in Computer Science(), vol 5753. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04238-6_6
Download citation
DOI: https://doi.org/10.1007/978-3-642-04238-6_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-04237-9
Online ISBN: 978-3-642-04238-6
eBook Packages: Computer ScienceComputer Science (R0)