Abstract
We describe a dimensionality reduction method used to perform similarity search that is tested on document image retrieval applications. The approach is based on data point projection into a low dimensional space obtained by merging together the layers of a Growing Hierarchical Self Organizing Map (GHSOM) trained to model the distribution of objects to be indexed. The low dimensional space is defined by embedding the GHSOM sub-maps in the space defined by a non-linear mapping of neurons belonging to the first level map. The latter mapping is computed with the Sammon projection algorithm.
The dimensionality reduction is used in a similarity search framework whose aim is to efficiently retrieve similar objects on the basis of the distance among projected points corresponding to high dimensional feature vectors describing the indexed objects.
We compare the proposed method with other dimensionality reduction techniques by evaluating the retrieval performance on three datasets.
Chapter PDF
Similar content being viewed by others
Keywords
- Dimensionality Reduction
- Voronoi Diagram
- Dimensionality Reduction Method
- Voronoi Region
- Dimensionality Reduction Technique
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Marinai, S., Marino, E., Soda, G.: Font adaptive word indexing of modern printed documents. IEEE Transactions on PAMI 28(8), 1187–1199 (2006)
Hastie, T., Tibshirani, R., Friedman, J.: The elements of statistical learning: data mining, inference, and prediction. Springer series in statistics, New York (2001)
Kanth, K.V.R., Agrawal, D., Singh, A.: Dimensionality reduction for similarity searching in dynamic databases. SIGMOD Rec. 27(2), 166–176 (1998)
Samet, H.: Foundations of multidimensional and metric data structures. Morgan Kaufmann, Amsterdam (2006)
Marinai, S., Marino, E., Soda, G.: Embedded map projection for dimensionality reduction-based similarity search. In: da Vitoria Lobo, N., Kasparis, T., Roli, F., Kwok, J.T., Georgiopoulos, M., Anagnostopoulos, G.C., Loog, M. (eds.) S+SSPR 2008. LNCS, vol. 5342, pp. 582–591. Springer, Heidelberg (2008)
van der Maaten, L., Postma, E., van den Herik, H.: Dimension reduction: A comparative review (preprint, 2007)
DeMers, D., Cottrell, G.: Nonlinear dimensionality reduction. In: NIPS-5 (1993)
Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)
Zhang, Z., Zha, H.: Principal manifolds and nonlinear dimensionality reduction via local tangent space alignment. SIAM Journal of Scientific Computing 26(1), 313–338 (2004)
Kohonen, T., Kaski, S., Lagus, K., Salojarvi, J., Honkela, J., Paatero, V., Saarela, A.: Self organization of a massive document collection. IEEE Transactions on Neural Networks 11(3), 574–585 (2000)
Chan, A., Pampalk, E.: Growing hierarchical self organising map (ghsom) toolbox: visualisations and enhancements. In: Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP 2002, vol. 5, pp. 2537–2541 (2002)
Li, C., Chang, E., Garcia-Molina, H., Wiederhold, G.: Clustering for approximate similarity search in high-dimensional spaces. IEEE Transactions on Knowledge and Data Engineering 14(4), 792–808 (2002)
Marinai, S., Faini, S., Marino, E., Soda, G.: Efficient word retrieval by means of SOM clustering and PCA. In: Bunke, H., Spitz, A.L. (eds.) DAS 2006. LNCS, vol. 3872, pp. 336–347. Springer, Heidelberg (2006)
Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2003)
Wu, Z., Yen, G.: A som projection technique with the growing structure for visualizing high-dimensional data. In: Proceedings of the International Joint Conference on Neural Networks, 2003, vol. 3, pp. 1763–1768 (2003)
Yen, G.G., Wu, Z.: Ranked centroid projection: a data visualization approach with self-organizing maps. IEEE Transactions on Neural Networks 19(2), 245–258 (2008)
van der Maaten, L.: An introduction to dimensionality reduction using matlab. Technical Report Technical Report MICC 07-07 (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Marinai, S., Marino, E., Soda, G. (2009). Nonlinear Embedded Map Projection for Dimensionality Reduction. In: Foggia, P., Sansone, C., Vento, M. (eds) Image Analysis and Processing – ICIAP 2009. ICIAP 2009. Lecture Notes in Computer Science, vol 5716. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04146-4_25
Download citation
DOI: https://doi.org/10.1007/978-3-642-04146-4_25
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-04145-7
Online ISBN: 978-3-642-04146-4
eBook Packages: Computer ScienceComputer Science (R0)