Experimental Study of FPT Algorithms for the Directed Feedback Vertex Set Problem | SpringerLink
Skip to main content

Experimental Study of FPT Algorithms for the Directed Feedback Vertex Set Problem

  • Conference paper
Algorithms - ESA 2009 (ESA 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5757))

Included in the following conference series:

Abstract

We evaluate the performance of FPT algorithms for the directed feedback vertex set problem (DFVS). We propose several new data reduction rules for DFVS. which can significantly reduce the search space. We also propose various heuristics to accelerate the FPT search. Finally, we demonstrate that DFVS is not more helpful for deadlock recovery (with mutex locks) than simple cycle detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bodlaender, H.L.: On linear time minor tests with depth first search. Journal of Algorithms 14, 1–23 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bodlaender, H.L., Penninkx, E.: A linear kernel for planar feedback vertex set. In: Grohe, M., Niedermeier, R. (eds.) IWPEC 2008. LNCS, vol. 5018, pp. 160–171. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  3. Chatrand, G., Lesniak, L.: Graphs & Digraphs, 2nd edn. The Wadsworth and Brooks/Cole Mathematics Series (1986)

    Google Scholar 

  4. Chen, J., Liu, Y., Lu, S., Sullivan, B., Razgon, I.: A fixed-parameter algorithm for the directed feedback vertex set problem. Journal of the ACM 55(5), 1–19 (2008)

    Article  MathSciNet  Google Scholar 

  5. Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness I: basic results. SIAM Journal on Computing 24, 873–921 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  6. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1999)

    Book  MATH  Google Scholar 

  7. Even, G., Naor, J., Schieber, B.: Approximating minimum feedback sets and multicuts in directed graphs. Algorithmica 20, 151–174 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fleischer, R., Xi, W., Yuan, L.: DFVS Project (2009), http://www.tcs.fudan.edu.cn/rudolf/Projects/DFVS/dfvs.html

  9. Huffner, F., Niedermeier, R., Wernicke, S.: Techniques for practical fixed-parameter algorithms. The Computer Journal 1(51), 7–25 (2008)

    Google Scholar 

  10. Jula, H., Tralamazza, D.M., Zamfir, C., Candea, G.: Deadlock immunity: Enabling systems to defend against deadlocks. In: Proceedings of the 8th USENIX Symposium on Operating System Design and Implementation (OSDI 2008), pp. 295–308 (2008)

    Google Scholar 

  11. Kunzamann, A., Wunderlich, H.J.: An analytical approach to the partial scan problem. Journal of Electronic Tesing: Theory and Applications 1(5), 163–1741 (1990)

    Article  Google Scholar 

  12. LEDA: A library of the data types and algorithms of combinatorial computing, http://www.mpi-inf.mpg.de/LEDA/

  13. Melancon, G., Dutour, I., Bousquet-Melou, M.: Random generation of directed acyclic graphs. Technical report, CWI Amsterdam (2006), http://www.cwi.nl/InfoVisu

  14. Seidl, H.: Personal communication (2000)

    Google Scholar 

  15. Thomasse, S.: A quadratic kernel for feedback vertex set. In: Proceedings of the 20th ACM-SIAM Symposium on Discrete Algorithms (SODA 2009), pp. 115–119 (2009)

    Google Scholar 

  16. Wang, C.-C., Lloyd, E.L., Soffa, M.L.: Feedback vertex sets and cyclically reducible graphs. Journal of the ACM 32(2), 2960–2913 (1985)

    Google Scholar 

  17. Wilson, D.B.: Generating random spanning trees more quickly than the cover time. In: Proceedings of the 28th ACM Symposium on the Theory of Computation (STOC 1996), pp. 296–303 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fleischer, R., Wu, X., Yuan, L. (2009). Experimental Study of FPT Algorithms for the Directed Feedback Vertex Set Problem. In: Fiat, A., Sanders, P. (eds) Algorithms - ESA 2009. ESA 2009. Lecture Notes in Computer Science, vol 5757. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04128-0_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04128-0_55

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04127-3

  • Online ISBN: 978-3-642-04128-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics