Abstract
We evaluate the performance of FPT algorithms for the directed feedback vertex set problem (DFVS). We propose several new data reduction rules for DFVS. which can significantly reduce the search space. We also propose various heuristics to accelerate the FPT search. Finally, we demonstrate that DFVS is not more helpful for deadlock recovery (with mutex locks) than simple cycle detection.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bodlaender, H.L.: On linear time minor tests with depth first search. Journal of Algorithms 14, 1–23 (1993)
Bodlaender, H.L., Penninkx, E.: A linear kernel for planar feedback vertex set. In: Grohe, M., Niedermeier, R. (eds.) IWPEC 2008. LNCS, vol. 5018, pp. 160–171. Springer, Heidelberg (2008)
Chatrand, G., Lesniak, L.: Graphs & Digraphs, 2nd edn. The Wadsworth and Brooks/Cole Mathematics Series (1986)
Chen, J., Liu, Y., Lu, S., Sullivan, B., Razgon, I.: A fixed-parameter algorithm for the directed feedback vertex set problem. Journal of the ACM 55(5), 1–19 (2008)
Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness I: basic results. SIAM Journal on Computing 24, 873–921 (1995)
Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1999)
Even, G., Naor, J., Schieber, B.: Approximating minimum feedback sets and multicuts in directed graphs. Algorithmica 20, 151–174 (1998)
Fleischer, R., Xi, W., Yuan, L.: DFVS Project (2009), http://www.tcs.fudan.edu.cn/rudolf/Projects/DFVS/dfvs.html
Huffner, F., Niedermeier, R., Wernicke, S.: Techniques for practical fixed-parameter algorithms. The Computer Journal 1(51), 7–25 (2008)
Jula, H., Tralamazza, D.M., Zamfir, C., Candea, G.: Deadlock immunity: Enabling systems to defend against deadlocks. In: Proceedings of the 8th USENIX Symposium on Operating System Design and Implementation (OSDI 2008), pp. 295–308 (2008)
Kunzamann, A., Wunderlich, H.J.: An analytical approach to the partial scan problem. Journal of Electronic Tesing: Theory and Applications 1(5), 163–1741 (1990)
LEDA: A library of the data types and algorithms of combinatorial computing, http://www.mpi-inf.mpg.de/LEDA/
Melancon, G., Dutour, I., Bousquet-Melou, M.: Random generation of directed acyclic graphs. Technical report, CWI Amsterdam (2006), http://www.cwi.nl/InfoVisu
Seidl, H.: Personal communication (2000)
Thomasse, S.: A quadratic kernel for feedback vertex set. In: Proceedings of the 20th ACM-SIAM Symposium on Discrete Algorithms (SODA 2009), pp. 115–119 (2009)
Wang, C.-C., Lloyd, E.L., Soffa, M.L.: Feedback vertex sets and cyclically reducible graphs. Journal of the ACM 32(2), 2960–2913 (1985)
Wilson, D.B.: Generating random spanning trees more quickly than the cover time. In: Proceedings of the 28th ACM Symposium on the Theory of Computation (STOC 1996), pp. 296–303 (1996)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Fleischer, R., Wu, X., Yuan, L. (2009). Experimental Study of FPT Algorithms for the Directed Feedback Vertex Set Problem. In: Fiat, A., Sanders, P. (eds) Algorithms - ESA 2009. ESA 2009. Lecture Notes in Computer Science, vol 5757. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04128-0_55
Download citation
DOI: https://doi.org/10.1007/978-3-642-04128-0_55
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-04127-3
Online ISBN: 978-3-642-04128-0
eBook Packages: Computer ScienceComputer Science (R0)