Abstract
We present lazy and forgetful algorithms for multiplying and dividing multivariate polynomials. The lazy property allows us to compute the i-th term of a polynomial without doing the work required to compute all the terms. The forgetful property allows us to forget earlier terms that have been computed to save space. For example, given polynomials A,B,C,D,E we can compute the exact quotient \(Q = \frac{A \times B - C \times D}{E}\) without explicitly computing the numerator A ×B − C ×D which can be much larger than any of A,B,C,D,E and Q. As applications we apply our lazy and forgetful algorithms to reduce the maximum space needed by the Bareiss fraction-free algorithm for computing the determinant of a matrix of polynomials and the extended Subresultant algorithm for computing the inverse of an element in a polynomial quotient ring.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bachman, O., Schönemann, H.: Monomial representations for Gröbner bases computations. In: Proceedings of ISSAC, pp. 309–316. ACM Press, New York (1998)
Bareiss, E.F.: Sylvester’s identity and multisptep integer-preserving Gaussian elimination. J. Math. Comp. 103, 565–578 (1968)
Burge, W.H., Watt, S.M.: Infinite structures in Scratchpad II. In: Davenport, J.H. (ed.) ISSAC 1987 and EUROCAL 1987. LNCS, vol. 378, pp. 138–148. Springer, Heidelberg (1989)
Geddes, K.O., Czapor, S.R., Labahn, G.: Algorithms for Computer Algebra. Kluwer Academic Publishers, Dordrecht (1992)
Johnson, S.C.: Sparse polynomial arithmetic. ACM SIGSAM Bulletin 8(3), 63–71 (1974)
Monagan, M.B., Pearce, R.: Polynomial Division using Dynamic Arrays, Heaps, and Packed Exponent Vectors. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2007. LNCS, vol. 4770, pp. 295–315. Springer, Heidelberg (2007)
Monagan, M., Pearce, R.: Sparse polynomial arithmetic using a heap. Journal of Symbolic Computation - Special Issue on Milestones In Computer Algebra (2008) (submitted)
van der Hoeven, J.: Relax, but don’t be too lazy. J. Symbolic Computation 11(1-000) (2002)
Watt, S.M.: A fixed point method for power series computation. In: Gianni, P. (ed.) ISSAC 1988. LNCS, vol. 358. Springer, Heidelberg (1989)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Monagan, M., Vrbik, P. (2009). Lazy and Forgetful Polynomial Arithmetic and Applications. In: Gerdt, V.P., Mayr, E.W., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2009. Lecture Notes in Computer Science, vol 5743. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04103-7_20
Download citation
DOI: https://doi.org/10.1007/978-3-642-04103-7_20
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-04102-0
Online ISBN: 978-3-642-04103-7
eBook Packages: Computer ScienceComputer Science (R0)