Lazy and Forgetful Polynomial Arithmetic and Applications | SpringerLink
Skip to main content

Lazy and Forgetful Polynomial Arithmetic and Applications

  • Conference paper
Computer Algebra in Scientific Computing (CASC 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5743))

Included in the following conference series:

Abstract

We present lazy and forgetful algorithms for multiplying and dividing multivariate polynomials. The lazy property allows us to compute the i-th term of a polynomial without doing the work required to compute all the terms. The forgetful property allows us to forget earlier terms that have been computed to save space. For example, given polynomials A,B,C,D,E we can compute the exact quotient \(Q = \frac{A \times B - C \times D}{E}\) without explicitly computing the numerator A ×B − C ×D which can be much larger than any of A,B,C,D,E and Q. As applications we apply our lazy and forgetful algorithms to reduce the maximum space needed by the Bareiss fraction-free algorithm for computing the determinant of a matrix of polynomials and the extended Subresultant algorithm for computing the inverse of an element in a polynomial quotient ring.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bachman, O., Schönemann, H.: Monomial representations for Gröbner bases computations. In: Proceedings of ISSAC, pp. 309–316. ACM Press, New York (1998)

    Google Scholar 

  2. Bareiss, E.F.: Sylvester’s identity and multisptep integer-preserving Gaussian elimination. J. Math. Comp. 103, 565–578 (1968)

    MathSciNet  MATH  Google Scholar 

  3. Burge, W.H., Watt, S.M.: Infinite structures in Scratchpad II. In: Davenport, J.H. (ed.) ISSAC 1987 and EUROCAL 1987. LNCS, vol. 378, pp. 138–148. Springer, Heidelberg (1989)

    Chapter  Google Scholar 

  4. Geddes, K.O., Czapor, S.R., Labahn, G.: Algorithms for Computer Algebra. Kluwer Academic Publishers, Dordrecht (1992)

    Book  MATH  Google Scholar 

  5. Johnson, S.C.: Sparse polynomial arithmetic. ACM SIGSAM Bulletin 8(3), 63–71 (1974)

    Article  Google Scholar 

  6. Monagan, M.B., Pearce, R.: Polynomial Division using Dynamic Arrays, Heaps, and Packed Exponent Vectors. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2007. LNCS, vol. 4770, pp. 295–315. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  7. Monagan, M., Pearce, R.: Sparse polynomial arithmetic using a heap. Journal of Symbolic Computation - Special Issue on Milestones In Computer Algebra (2008) (submitted)

    Google Scholar 

  8. van der Hoeven, J.: Relax, but don’t be too lazy. J. Symbolic Computation 11(1-000) (2002)

    Google Scholar 

  9. Watt, S.M.: A fixed point method for power series computation. In: Gianni, P. (ed.) ISSAC 1988. LNCS, vol. 358. Springer, Heidelberg (1989)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Monagan, M., Vrbik, P. (2009). Lazy and Forgetful Polynomial Arithmetic and Applications. In: Gerdt, V.P., Mayr, E.W., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2009. Lecture Notes in Computer Science, vol 5743. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04103-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04103-7_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04102-0

  • Online ISBN: 978-3-642-04103-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics