Abstract
In this work we realized special hardware for intrusion detection systems (IDS) based on behavioural biometrics and using bionformatics’ Smith-Waterman algorithm. As far as we know there are no published hardware implementations of bioinformatics algorithms used for IDS. It is shown in the paper that the use of hardware can efficiently exploit the inherent parallelism of the algorithm and reach Gigabit data processing rates that are required for current communications. Each processing unit can be replicated many times on deployed Field Programmable Gate Array (FPGA) and depending on the capacity of the device, almost proportionally increase the throughput.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bojanić, S., Caffarena, G., Petrović, S., Nieto-Taladriz, O.: FPGA for pseudorandom generator cryptanalysis. Microprocessors and Microsystems 30(2), 63–71 (2006)
Caffarena, G., Pedreira, C., Carreras, C., Bojanić, S., Nieto-Taladriz, O.: FPGA acceleration for DNA sequence alignment. Journal of Circuits, Systems and Computers 16(2), 245–266 (2007)
Coull, S., Branch, J., Szymanski, B., Breimer, E.: Intrusion Detection: A Bioinformatics Approach. In: Proc. 19th Annual Computer Security Applications Conf, p. 24 (2003)
DuMouchel, W., Ju, W.H., Karr, A.F., Schonlau, M., Theusen, M., Vardi, Y.: Computer Intrusion: Detectiong Masquerades. Statistical Science 16(1), 58–74 (2001)
Needleman, S.B., Wunsch, C.D.: A general method applicable to the search for similarities in the amino acid sequence of two proteins. Journal of molecular biology 48, 443–453 (1970)
Sai Krishna, V: Intrusion Detection Techniques: Pattern Matching and Protocol Analysis, Security Essentials (GSEC) Version 1.4b, April 26 (2003), http://www.giac.org/
Sinclair, C., Pierce, L., Matzner, S.: An Application of Machine Learning to Network Intrusion Detection. In: Proc. 1999 Anual Computer Security Applications Conf. (ACSAC), Phoenix, USA, December 1999, pp. 371–377 (1999)
Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences. Journal of molecular biology 147, 195–197 (1981)
Tripp, G.: An intrusion detection system for gigabit networks – architecture and an example system. Technical Report 7-04, Computing Laboratory, University of Kent (April 2004)
Underwood, K.D., Hemmert, K.S.: Closing the gap: CPU and FPGA trends in sustainable floating-point BLAS performance. In: Proc. 2004 IEEE Symposium on field-programmable custom computing machines (FCCM 2004), USA (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bojanić, S., Pejović, V., Caffarena, G., Milovanović, V., Carreras, C., Popović, J. (2009). Behavioural Biometrics Hardware Based on Bioinformatics Matching. In: Herrero, Á., Gastaldo, P., Zunino, R., Corchado, E. (eds) Computational Intelligence in Security for Information Systems. Advances in Intelligent and Soft Computing, vol 63. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04091-7_21
Download citation
DOI: https://doi.org/10.1007/978-3-642-04091-7_21
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-04090-0
Online ISBN: 978-3-642-04091-7
eBook Packages: EngineeringEngineering (R0)