ISeller: A Flexible Personalization Infrastructure for e-Commerce Applications | SpringerLink
Skip to main content

ISeller: A Flexible Personalization Infrastructure for e-Commerce Applications

  • Conference paper
E-Commerce and Web Technologies (EC-Web 2009)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 5692))

Included in the following conference series:

Abstract

We present ISeller, an industrial-strength recommendation system for a diverse range of commercial application domains. The system supports several recommendation paradigms such as collaborative, content-based and knowledge-based filtering, as well as one-shot and conversational interaction modes out of the box. A generic user modeling component allows different forms of hybrid personalization and enables the system to support process-oriented interactive selling in various product domains. This paper contributes a detailed discussion of a domain independent and flexible recommendation system from a software architecture viewpoint and illustrates it with different usage scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Adomavicius, G., Tuzhilin, A.: Towards the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering 17(6) (2005)

    Google Scholar 

  2. Adomavicius, G., Tuzhilin, A.: Multidimensional recommender systems: A data warehousing approach. In: Fiege, L., Mühl, G., Wilhelm, U.G. (eds.) WELCOM 2001. LNCS, vol. 2232, pp. 180–192. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  3. Berkovsky, S., Kuflik, T., Ricci, F.: Mediation of user models for enhanced personalization in recommender systems. User Modeling and User-Adapted Interaction 18(3), 245–286 (2008)

    Article  Google Scholar 

  4. Goy, A., Ardissono, L., Petrone, G.: Personalization in e-commerce applications. In: The Adaptive Web. LNCS, vol. 4321, pp. 485–520. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  5. Fink, J., Kobsa, A.: A review and analysis of commercial user modeling servers for personalization on the world wide web. User Modeling and User-Adapted Interaction 10(2-3), 209–249 (2000)

    Article  Google Scholar 

  6. Burke, R.: Hybrid recommender systems: Survey and experiments. User Modeling and User-Adapted Interaction 12(4), 331–370 (2002)

    Article  MATH  Google Scholar 

  7. Resnick, P., Iacovou, N., Suchak, N., Bergstrom, P., Riedl, J.: Grouplens: An open architecture for collaborative filtering of netnews. In: Computer Supported Collaborative Work (CSCW). Chapel Hill, NC (1994)

    Google Scholar 

  8. Herlocker, J.L., Konstan, J.A., Borchers, A., Riedl, J.: An algorithmic framework for performing collaborative filtering. In: International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 230–237. ACM, New York (1999)

    Google Scholar 

  9. Shardanand, U., Maes, P.: Social information filtering: Algorithms for automating word of mouth. In: Conference on Human Factors in Computing Systems (CHI), pp. 210–217 (1995)

    Google Scholar 

  10. Ricci, F., Werthner, H.: Case base querying for travel planning recommendation. Information Technology and Tourism 3, 215–266 (2002)

    Google Scholar 

  11. Cotter, P., Smyth, B.: Ptv: Intelligent personalized tv guides. In: 12th Innovative Applications of Artificial Intelligence (IAAI). AAAI Press, Menlo Park (2000)

    Google Scholar 

  12. Felfernig, A., Friedrich, G., Jannach, D., Zanker, M.: An integrated environment for the development of knowledge-based recommender applications. International Journal of Electronic Commerce 11(2), 11–34 (2007)

    Article  Google Scholar 

  13. Burke, R.: Knowledge-based recommender systems. Encyclopedia of Library and Information Systems 69(2) (2000)

    Google Scholar 

  14. Huhns, M.N., Singh, M.P.: Service-oriented computing: Key concepts and principles. IEEE Internet Computing 9(1), 75–81 (2005)

    Article  Google Scholar 

  15. Papazoglou, M.P.: Service-oriented computing: Concepts, characteristics and directions. In: Proceedings of the 4th International Conference on Web Information Systems Engineering (WISE), pp. 3–12 (2003)

    Google Scholar 

  16. Stal, M.: Using architectural patterns and blueprints for service-oriented architecture. IEEE Software 23(2), 54–61 (2006)

    Article  Google Scholar 

  17. Kiczales, G., Lamping, J., Menhdhekar, A., Maeda, C., Lopes, C., Loingtier, J.M., Irwin, J.: Aspect-oriented programming. In: Akşit, M., Matsuoka, S. (eds.) ECOOP 1997. LNCS, vol. 1241, pp. 220–242. Springer, Heidelberg (1997)

    Google Scholar 

  18. Kobsa, A.: Generic user modeling systems. User Modeling and User-Adapted Interaction 11(1-2), 49–63 (2001)

    Article  MATH  Google Scholar 

  19. Middleton, S.E., Shadbolt, N.R., Roure, D.C.D.: Ontological user profiling in recommender systems. ACM Trans. Inf. Syst. 22(1), 54–88 (2004)

    Article  Google Scholar 

  20. Jessenitschnig, M., Zanker, M.: A generic user modeling component for hybrid recommendation strategies. In: 11th IEEE Conference on Commerce and Enterprise Computing (CEC), Vienna, Austria. IEEE Press, Los Alamitos (2009)

    Google Scholar 

  21. Zanker, M., Jessenitschnig, M., Jannach, D., Gordea, S.: Comparing recommendation strategies in a commercial context. IEEE Intelligent Systems 22(3), 69–73 (2007)

    Article  Google Scholar 

  22. Markus, Z., Markus, J.: Case-studies on exploiting explicit customer requirements in recommender systems. User Modeling and User-Adapted Interaction 19(1-2), 133–166 (2009)

    Article  Google Scholar 

  23. Zanker, M.: A Collaborative Constraint-Based Meta-Level Recommender. In: 2nd ACM International Conference on Recommender Systems (ACM RecSys), Lausanne, Switzerland, pp. 139–146. ACM Press, New York (2008)

    Google Scholar 

  24. Zanker, M., Jessenitschnig, M.: Collaborative feature-combination recommender exploiting explicit and implicit user feedback. In: 11th IEEE Conference on Commerce and Enterprise Computing (CEC), Vienna, Austria. IEEE Computer Society Press, Los Alamitos (2009)

    Google Scholar 

  25. Zipf, A.: User-adaptive maps for location-based services (lbs) for tourism. In: Information and Communication Technologies in Tourism (ENTER 2002). Springer, Heidelberg (2002)

    Google Scholar 

  26. Zanker, M., Fuchs, M., Seebacher, A., Jessenitschnig, M., Stromberger, M.: An Automated Approach for Deriving Semantic Annotations of Tourism Products based on Geospatial Information. In: Proceedings of the Conference on Information and Communication Technologies in Tourism (ENTER), pp. 211–221 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jessenitschnig, M., Zanker, M. (2009). ISeller: A Flexible Personalization Infrastructure for e-Commerce Applications. In: Di Noia, T., Buccafurri, F. (eds) E-Commerce and Web Technologies. EC-Web 2009. Lecture Notes in Computer Science, vol 5692. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03964-5_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03964-5_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03963-8

  • Online ISBN: 978-3-642-03964-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics